Skip to main content
Log in

URB597 and the Cannabinoid WIN55,212-2 Reduce Behavioral and Neurochemical Deficits Induced by MPTP in Mice: Possible Role of Redox Modulation and NMDA Receptors

  • ORIGINAL ARTICLE
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Several physiological events in the brain are regulated by the endocannabinoid system (ECS). While synthetic cannabinoid receptor (CBr) agonists such as WIN55,212-2 act directly on CBr, agents like URB597, a fatty acid amide hydrolase (FAAH) inhibitor, induce a more “physiological” activation of CBr by increasing the endogenous levels of the endocannabinoid anandamide (AEA). Herein, we compared the pre- and post-treatment efficacy of URB597 and WIN55,212-2 on different endpoints evaluated in the toxic model produced by the mitochondrial toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice. MPTP (40 mg/kg, s.c., single injection) decreased locomotor activity, depleted the striatal and nigral levels of dopamine (DA), augmented the levels of lipid peroxidation and protein carbonylation in both regions, decreased the striatal protein levels of tyrosine hydroxylase, and increased the striatal protein content of the subunit 1 (NR1) of the N-methyl-d-aspartate receptor (NMDAr). Both URB597 (0.3 mg/kg, i.p., once a day) and WIN55,212-2 (10 μg/kg, i.p., twice a day), administered for five consecutive days, either before or after the MPTP injection, prevented the alterations elicited by MPTP and downregulated NMDAr. Our results support a modulatory role of the ECS on the toxic profile exerted by MPTP in mice via the stimulation of antioxidant activity and the induction of NMDAr downregulation and hypofunction, and favor the stimulation of CBr as an effective experimental therapeutic strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguirre JA, Kehr J, Yoshitake T, Liu FL, Rivera A, Fernandez-Espinola S, Fuxe K (2005) Protection but maintained dysfunction of nigral dopaminergic nerve cell bodies and striatal dopaminergic terminals in MPTP-lesioned mice after acute treatment with the mGluR5 antagonist MPEP. Brain Res 1033:216–220

    Article  CAS  PubMed  Google Scholar 

  • Alexander JP, Cravatt BF (2005) Mechanism of carbamate inactivation of FAAH: implications for the design of covalent inhibitors and in vivo functional probes for enzymes. Chem Biol 12:1179–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci U S A 80:4546–4550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  CAS  PubMed  Google Scholar 

  • Burke RE, O’Malley K (2013) Axon degeneration in Parkinson’s disease. Exp Neurol 246:72–83

    Article  CAS  PubMed  Google Scholar 

  • Cabral GA, Raborn ES, Griffin L, Dennis J, Marciano-Cabral F (2008) CB2 receptors in the brain: role in central immune function. Br J Pharmacol 153:240–251

    Article  CAS  PubMed  Google Scholar 

  • Celorrio M, Fernández-Suárez D, Rojo-Bustamante E, Echeverry-Alzate V, Ramírez MJ, Hillard CJ, López-Moreno JA, Maldonado R, Oyarzábal J, Franco R, Aymerich MS (2016) Fatty acid amide hydrolase inhibition for the symptomatic relief of Parkinson’s disease. Brain Behav Immun 57:94–105

    Article  CAS  PubMed  Google Scholar 

  • Colin-Gonzalez AL, Orozco-Ibarra M, Chanez-Cardenas ME, Rangel-Lopez E, Santamaria A, Pedraza-Chaverri J, Barrera-Oviedo D, Maldonado PD (2013) Heme oxygenase-1 (HO-1) upregulation delays morphological and oxidative damage induced in an excitotoxic/pro-oxidant model in the rat striatum. Neuroscience 231:91–101

    Article  CAS  PubMed  Google Scholar 

  • Chiba K, Trevor AJ, Castagnoli N Jr (1985) Active uptake of MPP+, a metabolite of MPTP, by brain synaptosomes. Biochem Biophys Res Commun 128:1228–1232

    Article  CAS  PubMed  Google Scholar 

  • Chung YC, Bok E, Huh SH, Park JY, Yoon SH, Kim SR, Kim YS, Maeng S, Park SH, Jin BK (2011) Cannabinoid receptor type 1 protects nigrostriatal dopaminergic neurons against MPTP neurotoxicity by inhibiting microglial activation. J Immunol 187:6508–6517

    Article  CAS  PubMed  Google Scholar 

  • Di Marzo V (2011) Endocannabinoid signaling in the brain: biosynthetic mechanisms in the limelight. Nature Neurosci 14:9–15

    Article  CAS  PubMed  Google Scholar 

  • Elphick MR, Egertová M (2001) The neurobiology and evolution of cannabinoid signalling. Philos Trans R Soc Lond Ser B Biol Sci 356:381–408

    Article  CAS  Google Scholar 

  • Garcia E, Rios C, Sotelo J (1992) Ventricular injection of nerve growth factor increases dopamine content in the striata of MPTP-treated mice. Neurochem Res 17:979–982

    Article  CAS  PubMed  Google Scholar 

  • Garcia E, Santana-Martinez R, Silva-Islas CA, Colín-Gonzalez AL, Galván-Arzate S, Heras Y, Maldonado PD, Sotelo J, Santamaría A (2014) S-allyl cysteine protects against MPTP-induced striatal and nigral oxidative neurotoxicity in mice: participation of Nrf2. Free Radic Res 48:159–167

    Article  CAS  PubMed  Google Scholar 

  • Gardoni F, Bellone C (2015) Modulation of the glutamatergic transmission by dopamine: a focus on Parkinson, Huntington and addiction diseases. Front Cell Neurosci 9:25.11

    Article  Google Scholar 

  • Goetz CG (2011) The history of Parkinson’s disease: early clinical descriptions and neurological therapies. Cold Spring Harbor Perspectives in Medicine 1:a008862

    Article  PubMed  PubMed Central  Google Scholar 

  • Hung HC, Lee EH (1998) MPTP produces differential oxidative stress and antioxidative responses in the nigrostriatal and mesolimbic dopaminergic pathways. Free Radic Biol Med 24:76–84

    Article  CAS  PubMed  Google Scholar 

  • Johnston TH, Huot P, Fox SH, Wakefield JD, Sykes KA, Bartolini WP, Milne GT, Pearson JP, Brotchie JM (2011) Fatty acid amide hydrolase (FAAH) inhibition reduces L-3,4-dihydroxyphenylalanine-induced hyperactivity in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned non-human primate model of Parkinson’s disease. J Pharmacol Exp Ther 336:423–430

    Article  CAS  PubMed  Google Scholar 

  • Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386:896–912

    Article  CAS  PubMed  Google Scholar 

  • Kreitzer AC, Malenka RC (2005) Dopamine modulation of state-dependent endocannabinoid release and long-term depression in the striatum. J Neurosci 25:10537–10545

    Article  CAS  PubMed  Google Scholar 

  • Kreitzer AC, Malenka RC (2007) Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson’s disease models. Nature 445:643–647

    Article  CAS  PubMed  Google Scholar 

  • Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

    Article  CAS  PubMed  Google Scholar 

  • Langston JW, Irwin I, Langston EB, Forno LS (1984) 1-Methyl-4-phenylpyridinium ion (MPP+): identification of a metabolite of MPTP, a toxin selective to the substantia nigra. Neurosci Lett 48:87–92

    Article  CAS  PubMed  Google Scholar 

  • Lastres-Becker I, Cebeira M, de Ceballos ML, Zeng BY, Jenner P, Ramos JA, Fernández-Ruiz JJ (2001) Increased cannabinoid CB1 receptor binding and activation of GTP-binding proteins in the basal ganglia of patients with Parkinson’s syndrome and of MPTP-treated marmosets. Eur J Neurosci 14:1827–1832

    Article  CAS  PubMed  Google Scholar 

  • Lauckner JE, Hille B, Mackie K (2005) The cannabinoid agonist WIN55,212-2 increases intracellular calcium via CB1 receptor coupling to Gq/11 G proteins. Proc Natl Acad Sci U S A 102:19144–19149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Ma J, Choi B-R, Chung C-H, Min SS, Jeon WK, Han J-S (2014) Chronic brain inflammation causes a reduction in GluN2A and GluN2B subunits of NMDA receptors and an increase in the phosphorylation of mitogen-activated protein kinases in the hippocampus. Mol Brain 7:33

    Article  PubMed  PubMed Central  Google Scholar 

  • Mechoulam R, Fride E (1995) In: Pertwee R (ed) The unpaved road to the endogenous brain cannabinoid ligands, the anandamides in “Cannabinoid Receptors”. Academic Press, London, pp 233–258

    Google Scholar 

  • Mogi M, Togari A, Ogawa M, Ikeguchi K, Shizuma N, Fan D, Nakano I, Nagatsu T (1998) Effects of repeated systemic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to mice on interleukin-1beta and nerve growth factor in the striatum. Neurosci Lett 250:25–28

    Article  CAS  PubMed  Google Scholar 

  • Morales M, Bonci A (2012) Getting to the core of addiction: hooking CB2 receptor into drug abuse? Nat Med 18:504–505

    Article  CAS  PubMed  Google Scholar 

  • Morgese MG, Cassano T, Gaetani S, Macheda T, Laconca L, Dipasquale P, Ferraro L, Antonelli T, Cuomo V, Giuffrida A (2009) Neurochemical changes in the striatum of dyskinetic rats after administration of the cannabinoid agonist WIN55,212-2. Neurochem Int 54:56–64

    Article  CAS  PubMed  Google Scholar 

  • Obata T (2002) Dopamine efflux by MPTP and hydroxyl radical generation. J Neural Transm 109:1159–1180

    Article  CAS  PubMed  Google Scholar 

  • Onaivi ES, Ishiguro H, Gu S, Liu QR (2012) CNS effects of CB2 cannabinoid receptors: beyond neuro-immuno-cannabinoid activity. J Psychopharmacol 26:92–103

    Article  CAS  PubMed  Google Scholar 

  • Pacher P, Batkai S, Kunos G (2006) The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 58:389–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagotto U, Marsicano G, Cota D, Lutz B, Pasquali R (2006) The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr Rev 27:73–100

    Article  CAS  PubMed  Google Scholar 

  • Palencia G, Garcia E, Osorio-Rico L, Trejo-Solis C, Escamilla-Ramirez A, Sotelo J (2015) Neuroprotective effect of thalidomide on MPTP-induced toxicity. Neurotoxicology 47:82–87

    Article  CAS  PubMed  Google Scholar 

  • Perry TL, Yong VW, Clavier RM, Jones K, Wright JM, Foulks JG, Wall RA (1985a) Partial protection from the dopaminergic neurotoxin N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by four different antioxidants in the mouse. Neurosci Lett 60:109–114

    Article  CAS  PubMed  Google Scholar 

  • Perry TL, Yong VW, Jones K, Wall RA, Clavier RM, Foulks JG, Wright JM (1985b) Effects of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and its metabolite, N-methyl-4-phenylpyridinium ion, on dopaminergic nigrostriatal neurons in the mouse. Neurosci Lett 58:321–326

    Article  CAS  PubMed  Google Scholar 

  • Pertwee RG (2005) Pharmacological actions of cannabinoids. Handb Exp Pharmacol 168:1–51

    Article  CAS  Google Scholar 

  • Piomelli D, Tarzia G, Duranti A, Tontini A, Mor M, Compton TR, Dasse O, Monaghan EP, Parrott JA, Putman D (2006) Pharmacological profile of the selective FAAH inhibitor KDS-4103 (URB597). CNS Drug Rev 12:21–38

    Article  CAS  PubMed  Google Scholar 

  • Price DA, Martinez AA, Seillier A, Koek W, Acosta Y, Fernandez E, Strong JR, Lutz B, Marsicano G, Roberts JL, Giuffrida A (2009) WIN55,212-2, a cannabinoid receptor agonist, protects against nigrostriatal cell loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Eur J Neurosci 29:2177–2186

    Article  PubMed  PubMed Central  Google Scholar 

  • Przedborski S, Jackson-Lewis V, Djaldetti R, Liberatore G, Vila M, Vukosavic S, Almer G (2000) The parkinsonian toxin MPTP: action and mechanism. Restor Neurol Neurosci 16:135–142

    CAS  PubMed  Google Scholar 

  • Ransom BR, Kunis DM, Irwin I, Langston JW (1987) Astrocytes convert the parkinsonism inducing neurotoxin, MPTP, to its active metabolite, MPP+. Neurosci Lett 75:323–328

    Article  CAS  PubMed  Google Scholar 

  • Romero J, Lastres-Becker I, de Miguel R, Berrendero F, Ramos JA, Fernandez-Ruiz J (2002) The endogenous cannabinoid system and the basal ganglia: biochemical, pharmacological, and therapeutic aspects. Pharmacol Ther 95:137–152

    Article  CAS  PubMed  Google Scholar 

  • Russo R, Loverme J, La Rana G, Compton TR, Parrott J, Duranti A, Tontini A, Mor M, Tarzia G, Calignano A, Piomelli D (2007) The fatty-acid amide hydrolase inhibitor URB597 (cyclohexyl carbamic acid 3′-carbamoyl-biphenyl-3-yl ester) reduces neuropathic pain after oral administration in mice. J Pharmacol Exp Ther 322:236–242

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Blázquez P, Rodríguez-Muñóz M, Garzón J (2014) The cannabinoid receptor 1 associates with NMDA receptors to produce glutamatergic hypofunction: implications in psychosis and schizophrenia. Front Pharmacol 4:169

    Article  PubMed  PubMed Central  Google Scholar 

  • Schinder AF, Olson EC, Spitzer NC, Montal M (1996) Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J Neurosci 16:6125–6133

    CAS  PubMed  Google Scholar 

  • Self DW (1999) Anandamide: a candidate neurotransmitter heads for the big leagues. Nature Neurosci 2:303–304

    Article  CAS  PubMed  Google Scholar 

  • Sgambato-Faure V, Cenci MA (2012) Glutamatergic mechanisms in the dyskinesias induced by pharmacological dopamine replacement and deep brain stimulation for the treatment of Parkinson’s disease. Prog Neurobiol 96:69–86

    Article  CAS  PubMed  Google Scholar 

  • Smeyne RJ, Jackson-Lewis V (2005) The MPTP model of Parkinson’s disease. Mol Brain Res 134:57–66

    Article  CAS  PubMed  Google Scholar 

  • Tatem KS, Quinn JL, Phadke A, Yu Q, Gordish-Dressman H, Nagaraju K (2014) Behavioral and locomotor measurements using an open field activity monitoring system for skeletal muscle diseases. J Vis Exp 91:51785

    Google Scholar 

  • Yang YJ, Zhang S, Ding JH, Zhou F, Hu G (2009) Iptakalim protects against MPP+-induced degeneration of dopaminergic neurons in association with astrocyte activation. Int J Neuropsychopharmacol 12:317–327

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Salvador Monje for his technical support.

Funding

This work was supported by CONACyT-TUBITAK Grant 265991 (A.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Esperanza García or Abel Santamaría.

Ethics declarations

All procedures with mice were carried out strictly according to the local guidelines (Norma Oficial Mexicana NOM-062-ZOO-2001) for the use and care of laboratory animals as well as the “Guidelines for the Use of Animals in Neuroscience Research” from the Society of Neuroscience. The experiments were approved by the Ethics Committee of the INNN.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escamilla-Ramírez, A., García, E., Palencia-Hernández, G. et al. URB597 and the Cannabinoid WIN55,212-2 Reduce Behavioral and Neurochemical Deficits Induced by MPTP in Mice: Possible Role of Redox Modulation and NMDA Receptors. Neurotox Res 31, 532–544 (2017). https://doi.org/10.1007/s12640-016-9698-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-016-9698-1

Keywords

Navigation