Skip to main content

Advertisement

Log in

Mosquito larvicidal potential of potash alum against malaria vector Anopheles stephensi (Liston)

  • Original Article
  • Published:
Journal of Parasitic Diseases Aims and scope Submit manuscript

Abstract

Mosquito larviciding may prove to be an effective tool for incorporating into integrated vector management strategies for reducing malaria transmission. Here, we report the potential of potash alum, a traditionally known salt in Indian Ayurveda and Chinese medicine system, in malaria vector control by evaluating its aqueous suspension as larvicide and growth disruptor of Anopheles stephensi, under laboratory conditions. Immature stages of the mosquito were tested using WHO guidelines. 50 and 90% lethal concentrations among various larvae ranged between 2.1 to 48.74 ppm and 15.78 to 93.11 ppm, respectively. The results indicated that larvicidal effects of potash alum were comparable to various biological and chemical insecticides. The study provides considerable scope in exploiting local indigenous resources for the control of nuisance mosquito vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbott WS (1925) A method for computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    CAS  Google Scholar 

  • Amalraj DD, Das PK (1996) Toxicity of insecticides to Toxorhynchites splendens and three vector mosquitoes and their sublethal effect on biocontrol potential of the predator. Southeast Asian J Trop Med Public Health 27:154–159

    PubMed  CAS  Google Scholar 

  • Azmi MA, Naqvi SNH, Ahmad I, Tabassum R, Anbreen B (1998) Toxicity of neem leaves extract (NLX) compared with Malathion (57E.C.) against late 3rd instar larvae of Culex fatigans (Wild strain) by WHO Method. Trop J Zool 22:213–218

    Google Scholar 

  • Batabyal L, Sharma P, Mohana L, Mauryaa P, Srivastava CN (2007) Larvicidal efficiency of certain seed extracts against Anopheles stephensi, with reference to Azadirachta indica. J Asia-Pac Entomol 10:251–255

    Article  Google Scholar 

  • Chandra G (1995) Susceptibility status of Phlebotomus argentipes to DDT, dieldrin and malathion. J Commun Dis 27:247–249

    PubMed  CAS  Google Scholar 

  • Chandra G, Bhattacharjee I, Chatterjee SN, Ghosh A (2008) Mosquito control by larvivorous fish. Indian J Med Res 127:13–27

    PubMed  CAS  Google Scholar 

  • Chowdhury N, Laskar S, Chandra G (2008) Mosquito larvicidal and antimicrobial activity of protein of Solanum villosum leaves. BMC Compl Alt Med 8:62

    Article  Google Scholar 

  • Crump J, Okoth GO, Slutsker L, Ogaja DO, Keswick BH, Luby SP (2004) Effect of point-of-use disinfection, flocculation and combined flocculation-disinfection on drinking water quality in western Kenya. J Appl Microbiol 97:225–231

    Article  PubMed  CAS  Google Scholar 

  • Dash AP, Valecha N, Anvikar AR, Kumar A (2008) Malaria in India: challenges and opportunities. J Biosci 33:583–592

    Article  PubMed  CAS  Google Scholar 

  • Dwivedi SC, Karwasara K (2003) Larvicidal activity of five plant extracts against Culex quinquefasciatus. Indian J Entomol 65:335–338

    Google Scholar 

  • Fillinger U, Knols BGJ, Becker N (2003) Efficacy and efficiency of a new Bacillus thuringiensis var. israelensis and Bacillus sphaericus formulations against Afrotropical anophelines in Western Kenya. Trop Med Int Health 8:37–47

    Article  PubMed  Google Scholar 

  • Finney DJ (1971) Probit analysis, 3rd edn. University Press Cambridge, Cambridge, UK

    Google Scholar 

  • Green MM, Singer JM, Sutherland DJ, Hibbon CR (1991) Larvicidal activity of Tagetes minuta (Mariegold) towards Aedes aegypti. J Am Mosq Control Assoc 7:282–286

    PubMed  CAS  Google Scholar 

  • Jeyabalan D, Murugan K (1999) Effect of certain plant extracts against the mosquito Anopheles stephensi Liston. Curr Sci 76:631–633

    Google Scholar 

  • Latha C, Vijhayakumar PD, Velayudhan S, Joseph A (1999) Biological activity of indigenous plant extracts as mosquito larvicides. Indian J Exp Biol 37:206–208

    Google Scholar 

  • Mukhopadhyay AK, Tamizharasu W, Satya Babu P, Chandra G, Hati AK (2010) Effect of common salt on laboratory reared immature stages of Aedes aegypti (L.). Asia Pac J Trop Med 3:173–175

    Article  Google Scholar 

  • Mulla MS, Su T (1999) Activity and biological effects of neem products against arthropods of medical and veterinary importance. J Am Mosq Control Assoc 15:133–152

    PubMed  CAS  Google Scholar 

  • Nathan SS, Hisham A, Jayakumar G (2008) Larvicidal and growth inhibition of the malaria vector Anopheles stephensi by triterpenes from Dysoxylum malabaricum and Dysoxylum beddomei. Fitoterapia 79:106–111

    Article  PubMed  CAS  Google Scholar 

  • Okumo FO, Knols BGJ, Fillinger U (2007) Larvicidal effects of neem (Azadirachta indica) oil formulations on the malaria vector Anopheles gambiae. Malaria Journal 6:63

    Article  Google Scholar 

  • Omer SM, Georghiou GP, Irving SN (1980) DDT/Pyrethroid resistance interrelationship in Anopheles stephensi. Mosquito News 40:200–209

    CAS  Google Scholar 

  • Oo KN, Aung KS, Thida M, Knine WW, Soe MM, Aye T (1993) Effectiveness of potash alum in decontaminating household water. J Diarrhoeal Dis Res 11:172–174

    PubMed  CAS  Google Scholar 

  • Park HW, Bideshi DK, Wirth MC, Johnson JJ, Walton WE, Federici BA (2005) Recombinant larvicidal bacteria with markedly improved efficacy against Culex vectors of West Nile virus. Am J Trop Med Hyg 72:732–738

    PubMed  CAS  Google Scholar 

  • Poopathi S, Tyagi BK (2002) Studies on Bacillus sphaericus toxicity related resistance development and biology in the filariasis vector Culex quinquefasciatus (Diptera:Culicidae) from South India. Appl Entomol Zool 37:365–371

    Article  Google Scholar 

  • Rao DR, Mani TR, Rajendran R, Joseph AS, Gajanana A, Reuben R (1995) Development of high level of resistance to Bacillus sphaericus in a field population of Culex quinquefasciatus from Kochi, India. J Am Mosq Control Assoc 11:1–5

    PubMed  CAS  Google Scholar 

  • Senthilkumar N, Varma P, Gurusubramanian G (2009) Larvicidal and adulticidal activities of some medicinal plants against the malarial vector, Anopheles stephensi (Liston). Parasitol Res 104:237–244

    Article  PubMed  CAS  Google Scholar 

  • Sharma VP (1999) Current scenario of malaria in India. Parasitologia 41:349–353

    CAS  Google Scholar 

  • Singh G, Prakash S (2008) Efficacy of Bacillus sphaericus against larvae of malaria and filarial vectors: an analysis of early resistance detection. Parasitol Res 104:763–766

    Article  PubMed  Google Scholar 

  • Sosan MB, Adewoyin FB, Adewunmi CO (2001) Larvicidal properties of three indigenous plant oils on the mosquito Aedes aegypti. Niger J Nat Prod Med 5:30–33

    Google Scholar 

  • Vinayagam A, Senthilkumar N, Umamaheswari A (2008) Larvicidal activity of some medicinal plant extracts against malaria vector Anopheles stephensi. Res J Parasitol 3:50–58

    Article  Google Scholar 

  • Vyas N, Dua KK, Prakash S (2007) Efficacy of Lagenidium giganteum metabolites on mosquito larvae with reference to nontarget organisms. Parasitol Res 101:385–390

    Article  PubMed  Google Scholar 

  • WHO (1996) Report of the WHO Informal consultation on the evaluation and testing of insecticides.CTD/WHOPES/IC/96.1

  • WHO (2007) Global plan to combat neglected tropical diseases 2008–2015. WHO/CDS/NTD/2007.3

  • Wirth MC, Jiannino JA, Federici BA, Walton WE (2004) Synergy between toxins from Bacillus thuringiensis, subsp. israelensis and Bacillus sphaericus. J Med Entomol 41:935–941

    Article  PubMed  CAS  Google Scholar 

  • Wirth MC, Yang Y, Walton WE, Federici BA, Berry C (2007) Mtx toxins synergize Bacillus sphaericus and Cry 11 Aa against susceptible and insecticide resistant Culex quinquefasciatus larvae. Appl Environ Microbiol 73:6066–6071

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Prof. V.G. Das, Director, Dayalbagh Educational Institute for extending necessary facilities and support to carry out this research work.

Conflict of interest

There exist no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shabad Preet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preet, S., Seema, K.C. Mosquito larvicidal potential of potash alum against malaria vector Anopheles stephensi (Liston). J Parasit Dis 34, 75–78 (2010). https://doi.org/10.1007/s12639-010-0015-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12639-010-0015-2

Keywords

Navigation