Skip to main content
Log in

Plant proteomics in India and Nepal: current status and challenges ahead

  • Review article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Plant proteomics has made tremendous contributions in understanding the complex processes of plant biology. Here, its current status in India and Nepal is discussed. Gel-based proteomics is predominantly utilized on crops and non-crops to analyze majorly abiotic (49 %) and biotic (18 %) stress, development (11 %) and post-translational modifications (7 %). Rice is the most explored system (36 %) with major focus on abiotic mainly dehydration (36 %) stress. In spite of expensive proteomics setup and scarcity of trained workforce, output in form of publications is encouraging. To boost plant proteomics in India and Nepal, researchers have discussed ground level issues among themselves and with the International Plant Proteomics Organization (INPPO) to act in priority on concerns like food security. Active collaboration may help in translating this knowledge to fruitful applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abat JK, Deswal R (2009) Differential modulation of S-nitrosoproteome of Brassica juncea by low temperature: Change in S-nitrosylation of Rubisco is responsible for the inactivation of its carboxylase activity. Proteomics 9:4368–4380

    Article  PubMed  CAS  Google Scholar 

  • Abat JK, Deswal R (2012) Nitric oxide modulates the expression of proteins and promotes epiphyllous bud differentiation in Kalanchoe pinnata. J Plant Growth Regul 32:92–101

    Article  Google Scholar 

  • Abat JK, Mattoo AK, Deswal R (2008) S-nitrosylated proteins of a medicinal CAM plant Kalanchoe pinnata- ribulose-1,5-bisphosphate carboxylase/oxygenase activity targeted for inhibition. FEBS J 275:2862–2872

    Article  PubMed  CAS  Google Scholar 

  • Agrawal GK Rakwal R (2008) Plant proteomics: technologies, strategies, and applications. In: Agrawal GK, Rakwal R (eds.), John Wiley & Sons, Inc., Hoboken

  • Agrawal GK, Thelen JJ (2006) Large scale identification and quantitative profiling of phosphoproteins expressed during seed filling in oilseed rape. Mol Cell Proteomics 5:2044–2059

    Article  PubMed  CAS  Google Scholar 

  • Agrawal GK, Rakwal R, Yonekura M, Kubo A, Saji H (2002) Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings. Proteomics 2:947–959

    Article  PubMed  CAS  Google Scholar 

  • Agrawal GK, Hajduch M, Graham K, Thelen JJ (2008a) In-depth investigation of the soybean seed-filling proteome and comparison with a parallel study of rapeseed. Plant Physiol 148:504–518

    Article  PubMed  CAS  Google Scholar 

  • Agrawal L, Chakraborty S, Jaiswal DK, Gupta S, Datta A, Chakraborty N (2008b) Comparative proteomics of tuber induction, development and maturation reveal the complexity of tuberization process in potato (Solanum tuberosum L.). J Proteome Res 7:3803–3817

    Article  PubMed  CAS  Google Scholar 

  • Agrawal P, Kumar S, Das HR (2010) Mass spectrometric characterization of isoform variants of peanut (Arachis hypogaea) stem lectin (SL-I). J Proteome Res 73:1573–1586

    Article  CAS  Google Scholar 

  • Agrawal GK, Job D, Zivy M, Agrawal VP, Bradshaw RA, Dunn MJ, Haynes PA, van Wijk KJ, Kikuchi S, Renaut J, Weckwerth W, Rakwal R (2011a) Time to articulate a vision for the future of plant proteomics - a global perspective: an initiative for establishing the International Plant Proteomics Organization (INPPO). Proteomics 11:1559–1568

    Article  PubMed  CAS  Google Scholar 

  • Agrawal P, Kumar S, Jaiswal YK, Das HR, Das RH (2011b) A Mesorhizobium lipopolysaccharide (LPS) specific lectin (CRL) from the roots of nodulating host plant, Cicer arietinum. Biochimie 93:440–449

    Article  PubMed  CAS  Google Scholar 

  • Agrawal GK, Pedreschi R, Barkla BJ, Bindschedler LV, Cramer R, Sarkar A, Renaut J, Job D, Rakwal R (2012a) Translational plant proteomics: a perspective. J Proteomics 75:4588–4601

    Article  PubMed  CAS  Google Scholar 

  • Agrawal GK, Sarkar A, Agrawal R, Ndimba BK, Tanou G, Dunn MJ, Kieselbach T, Cramer R, Wienkoop S, Chen S, Rafudeen MS, Deswal R, Barkla BJ, Weckwerth W, Heazlewood JL, Renaut J, Job D, Chakraborty N, Rakwal R (2012b) Boosting the globalization of plant proteomics through INPPO: current developments and future prospects. Proteomics 12:359–368

    Article  PubMed  Google Scholar 

  • Agrawal GK, Sarkar A, Righetti PG, Pedreschi R, Carpentier S, Wang T, Barkla BJ, Kohli A, Ndimba BK, Bykova NV, Rampitsch C, Zolla L, Rafudeen MS, Cramer R, Bindschedler LV, Tsakirpaloglou N, Ndimba RJ, Farrant JM, Renaut J, Job D, Kikuchi S, Rakwal R (2013) A decade of plant proteomics and mass spectrometry: translation of technical advancements to food security and safety issues. Mass Spectrom Rev. doi:10.1002/mas.21365

    PubMed  Google Scholar 

  • Amalraj RS, Selvaraj N, Veluswamy GK, Ramanujan RP, Muthurajan R, Palaniyandi M, Agrawal GK, Rakwal R, Viswanathan R (2010) Sugarcane proteomics: establishment of a protein extraction method for 2-DE in stalk tissues and initiation of sugarcane proteome reference map. Electrophoresis 31:1959–1974

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharayya D, Sinha R, Ghanta S, Chakraborty A, Hazra S, Chattopadhyay S (2012) Proteins differentially expressed in elicited cell suspension culture of Podophyllum hexandrum with enhanced podophyllotoxin content. Proteome Sci 10:34. doi:10.1186/1477-5956-10-34

    Article  Google Scholar 

  • Bhushan D, Pandey A, Chattopadhyay A, Choudhary MK, Chakraborty S, Datta A, Chakraborty N (2006) Extracellular matrix proteome of chickpea (Cicer arietinum L.) illustrates pathway abundance, novel protein functions and evolutionary perspect. J Proteome Res 5:1711–1720

    Article  PubMed  CAS  Google Scholar 

  • Bhushan D, Pandey A, Choudhary MK, Datta A, Chakraborty S, Chakraborty N (2007) Comparative proteomics analysis of differentially expressed proteins in Chickpea extracellular matrix during dehydration stress. Mol Cell Proteomics 6:1868–1884

    Article  PubMed  CAS  Google Scholar 

  • Bhushan D, Jaiswal DK, Ray D, Basu D, Datta A, Chakraborty S, Chakraborty N (2011) Dehydration-responsive reversible and irreversible changes in the extracellular matrix: comparative proteomics of chickpea genotypes with contrasting tolerance. J Proteome Res 10:2027–2046

    Article  PubMed  CAS  Google Scholar 

  • Biswas S, Agrawal P, Saroha A, Das HR (2009) Purification and mass spectrometric characterization of Sesbania aculeata (Dhaincha) stem lectin. Protein J 28:391–399

    Article  PubMed  CAS  Google Scholar 

  • Cánovas FM, Dumas-Gaudot E, Recorbet G, Jorrin J, Mock HP, Rossignol M (2004) Plant proteome analysis. Proteomics 4:285–298

    Article  PubMed  Google Scholar 

  • Chakraborty S, Chakraborty N, Agrawal L, Ghosh S, Narula K, Shekhar S, Naik PS, Pande PC, Chakrborti SK, Datta A (2010) Next-generation protein-rich potato expressing the seed protein gene AmA1 is a result of proteome rebalancing in transgenic tuber. Proc Natl Acad Sci USA 107:17533–17538

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay A, Subba P, Pandey A, Bhushan D, Kumar R, Datta A, Chakraborty S, Chakraborty N (2011) Analysis of the grasspea proteome and identification of stress-responsive proteins upon exposure to high salinity, low temperature, and abscisic acid treatment. Phytochemistry 72:1293–1307

    Article  PubMed  CAS  Google Scholar 

  • Cho K, Agrawal GK, Shibato J, Jung YH, Kim YK, Nahm BH, Jwa NS, Tamogami S, Han O, Kohda K, Iwahashi H, Rakwal R (2007) Survey of differentially expressed proteins and genes in jasmonic acid treated rice seedling shoot and root at the proteomics and transcriptomics levels. J Proteome Res 6:3581–3603

    Article  PubMed  CAS  Google Scholar 

  • Cho K, Shibato J, Agrawal GK, Jung YH, Kubo A, Jwa NS, Tamogami S, Satoh K, Kikuchi S, Higashi T, Kimura S, Saji H, Tanaka Y, Iwahashi H, Masuo Y, Rakwal R (2008) Integrated transcriptomics, proteomics, and metabolomics analyzes to survey ozone responses in the leaves of rice seedling. J Proteome Res 7:2980–2998

    Article  PubMed  CAS  Google Scholar 

  • Choudhary MK, Basu D, Datta A, Chakraborty N, Chakraborty S (2009) Dehydration-responsive nuclear proteome of rice (Oryza sativa L.) illustrates protein network, novel regulators of cellular adaptation, and evolutionary perspective. Mol Cell Proteomics 8:1579–1598

    Article  PubMed  CAS  Google Scholar 

  • Chourey K, Ramani S, Apte SK (2003) Accumulation of LEA proteins in salt (NaCl) stressed young seedlings of rice (Oryza sativa L.) cultivar Bura Rata and their degradation during recovery from salinity stress. J Plant Physiol 160:1165–1174

    Article  PubMed  CAS  Google Scholar 

  • Deeba F, Pandey AK, Ranjan S, Mishra A, Singh R, Sharma YK, Shirke PA, Pandey V (2012) Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress. Plant Physiol Biochem 53:6–18

    Article  PubMed  CAS  Google Scholar 

  • Demartini DR, Jain R, Agrawal G, Thelen JJ (2011) Proteomic comparison of plastids from developing embryos and leaves of Brassica napus. J Proteome Res 10:2226–2237

    Article  PubMed  CAS  Google Scholar 

  • Dogra V, Ahuja PS, Sreenivasulu Y (2013) Change in protein content during seed germination of a high altitude plant Podophyllum hexandrum Royle. J Proteomics 78:26–38

    Article  PubMed  CAS  Google Scholar 

  • Ehrhardt DW, Frommer WB (2012) New technologies for 21st century plant science. Plant Cell 00:1–21

    Google Scholar 

  • FAO (2009) How to feed the world in 2050, high-level expert forum. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2010) The State of Food Insecurity in the World: addressing food insecurity in protracted crises. ISBN 978-92-5-106610-2, 2010, Food and Agriculture Organization of the United Nations, Rome

  • Frohlich A, Gaupels F, Sarioglu H, Holzmeister C, Spannagl M, Durner J, Lindermayr C (2012) Looking deep inside: detection of low-abundance proteins in leaf extracts of Arabidopsis and phloem exudates of pumpkin. Plant Physiol 159:902–914

    Article  PubMed  Google Scholar 

  • Gill T, Dogra V, Kumar S, Ahuja PS, Sreenivasulu Y (2012) Protein dynamics during seed germination under copper stress in Arabidopsis over-expressing Potentilla superoxide dismutase. J Plant Res 125:165–172

    Article  PubMed  CAS  Google Scholar 

  • Gupta R, Deswal R (2012) Low temperature stress modulated secretome analysis and purification of antifreeze protein from Hippophae rhamnoides, a Himalayan wonder plant. J Proteome Res 11:2684–2696

    Article  PubMed  CAS  Google Scholar 

  • Hajduch M, Rakwal R, Agrawal GK, Yonekura M, Pretova A (2001) High-resolution two-dimensional electrophoresis separation of proteins from metal-stressed rice (Oryza sativa L.) leaves: drastic reductions/fragmentation of ribulose-1,5-bisphosphate carboxylase/oxygenase and induction of stress related proteins. Electrophoresis 22:2824–2831

    Article  PubMed  CAS  Google Scholar 

  • Hakeem KR, Chandna R, Ahmad A, Qureshi MI, Iqbal M (2012a) Proteomic analysis for low and high nitrogen-responsive proteins in the leaves of rice genotypes grown at three nitrogen levels. Appl Biochem Biotechnol 168:834–850

    Article  PubMed  CAS  Google Scholar 

  • Hakeem KR, Chandna R, Ahmad P, Iqbal M, Ozturk M (2012b) Relevance of proteomic investigations in plant abiotic stress physiology. OMICS 16:621–635

    Article  PubMed  CAS  Google Scholar 

  • Heazlewood JL (2011) The green proteome: challenges in plant proteomics. Front Plant Sci 2:6

    Article  PubMed  Google Scholar 

  • Jain S, Srivastava S, Sarin NB, Kav NN (2006) Proteomics reveals elevated levels of PR 10 proteins in saline-tolerant peanut (Arachis hypogaea) calli. Plant Physiol Biochem 44:253–259

    Article  PubMed  CAS  Google Scholar 

  • Jaiswal DK, Ray D, Subba P, Mishra P, Gayali S, Datta A, Chakraborty S, Chakraborty N (2012) Proteomic analysis reveals the diversity and complexity of membrane proteins in chickpea (Cicer arietinum L.). Proteome Sci 10:59

    Article  PubMed  CAS  Google Scholar 

  • Jung YH, Rakwal R, Agrawal GK, Shibato J, Kim JA, Lee MO, Choi PK, Jung SH, Kim SH, Koh HJ, Yonekura M, Iwahashi H, Jwa NS (2006) Differential expression of defense/stress-related marker proteins in leaves of a unique rice blast lesion mimic mutant (blm). J Proteome Res 5:2586–2598

    Article  PubMed  CAS  Google Scholar 

  • Jung YH, Jeong SH, Kim SH, Singh R, Lee JE, Cho YS, Agrawal GK, Rakwal R, Jwa NS (2008) Systematic secretome analyzes of rice leaf and seed callus suspension-cultured cells: workflow development and establishment of high-density two-dimensional gel reference maps. J Proteome Res 7:5187–5210

    Article  PubMed  CAS  Google Scholar 

  • Katavic V, Agrawal GK, Hajduch M, Harris SL, Thelen JJ (2006) Protein and lipid composition analysis of oil bodies from two Brassica napus cultivars. Proteomics 6:4586–4598

    Article  PubMed  CAS  Google Scholar 

  • Kim DW, Rakwal R, Agrawal GK, Jung YH, Shibato J, Jwa NS, Iwahashi Y, Iwahashi H, Kim DH, Shim S, Usui K (2005) A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis 26:4521–4539

    Article  PubMed  CAS  Google Scholar 

  • Kim ST, Kang YH, Wang Y, Wu J, Park ZY, Rakwal R, Agrawal GK, Lee SY, Kang KY (2009) Secretome analysis of differentially induced proteins in rice suspension-cultured cells triggered by rice blast fungus and elicitor. Proteomics 9:1302–1313

    Article  PubMed  CAS  Google Scholar 

  • Kim SG, Wang Y, Lee KH, Park ZY, Park J, Wu J, Kwon SJ, Lee YH, Agrawal GK, Rakwal R, Kim ST, Kang KY (2013a) In-depth insight into in vivo apoplastic secretome of rice-Magnaporthe oryzae interaction. J Proteomics 78:58–71

    Article  PubMed  CAS  Google Scholar 

  • Kim YJ, Lee HM, Wang Y, Wu J, Kim SG, Kang KY, Park KH, Kim YC, Choi IS, Agrawal GK, Rakwal R, Kim ST (2013b) Depletion of abundant plant RuBisCO protein using the protamine sulfate precipitation method. Proteomics. doi:10.1002/pmic.201200555

    Google Scholar 

  • Kumar S, Verma AK, Sharma A, Kumar D, Tripathi A, Chaudhari BP, Das M, Jain SK, Dwivedi PD (2013) Phytohemagglutinins augment red kidney bean (Phaseolus vulgaris L.) induced allergic manifestations. J Proteomics. doi:10.1016/j.jprot.2013.02.003

    Google Scholar 

  • Kundu S, Chakraborty D, Pal A (2011) Proteomic analysis of salicylic acid induced resistance to Mungbean Yellow Mosaic India Virus in Vigna mungo. J Proteomics 74:337–349

    Article  PubMed  CAS  Google Scholar 

  • Kundu S, Chakraborty D, Kundu A, Pal A (2013) Proteomics approach combined with biochemical attributes to elucidate compatible and incompatible plant-virus interactions between Vigna mungo and Mungbean Yellow Mosaic India Virus. Proteome Sci 11:15

    Article  PubMed  CAS  Google Scholar 

  • Lambert JP, Ethier M, Smith JC, Figeys D (2005) Proteomics: from gel based to gel free. Anal Chem 77:3771–3788

    Article  PubMed  CAS  Google Scholar 

  • Mandal SM, Mandal M, Pati BR, Das AK, Ghosh AK (2009) Proteomics view of a Rhizobium isolate response to arsenite [As(III)] stress. Acta Microbiol Immunol Hung 56:157–167

    Article  PubMed  CAS  Google Scholar 

  • McDonald H, Friedman D (2010) Leverging technologies: DIGE and MudPIT. J Biomol Tech 21:S10

    Google Scholar 

  • Mishra M, Tamhane VA, Khandelwal N, Kulkarni MJ, Gupta VS, Giri AP (2010) Interaction of recombinant CanPIs with Helicoverpa armigera gut proteases reveals their processing patterns, stability and efficiency. Proteomics 10:2845–2857

    Article  PubMed  CAS  Google Scholar 

  • Narula K, Datta A, Chakraborty N, Chakraborty S (2013) Comparative analyses of nuclear proteome: extending its function. Frontiers Plant Sci. doi:10.3389/fpls.2013.00100

    Google Scholar 

  • Pandey A, Choudhary MK, Bhushan D, Chattopadhyay A, Chakraborty S, Datta A, Chakraborty N (2006) The nuclear proteome of Chickpea (Cicer arietinum L.) reveals predicted and unexpected proteins. J Proteome Res 5:3301–3311

    Article  PubMed  CAS  Google Scholar 

  • Pandey A, Chakraborty S, Datta A, Chakraborty N (2008) Proteomics approach to identify dehydration responsive nuclear proteins from Chickpea (Cicer arietinum L.). Mol Cell Proteomics 7:88–107

    PubMed  CAS  Google Scholar 

  • Pandey A, Rajamani U, Verma J, Subba P, Chakraborty N, Datta A, Chakraborty S, Chakraborty N (2010) Identification of extracellular matrix proteins of rice (Oryza sativa L.) involved in dehydration-responsive network: a proteomic approach. J Proteome Res 9:3443–3464

    Article  PubMed  CAS  Google Scholar 

  • Pandey S, Rai R, Rai LC (2012) Proteomics combines morphological, physiological and biochemical attributes to unravel the survival strategy of Anabaena sp. PCC7120 under arsenic stress. J Proteomics 75:921–937

    Article  PubMed  CAS  Google Scholar 

  • Pathak M, Singh B, Sharma A, Agrawal P, Pasha SB, Das HR, Das RH (2006) Molecular cloning, expression, and cytokinin (6-benzylaminopurine) antagonist activity of peanut (Arachis hypogaea) lectin SL-I. Plant Mol Biol 62:529–545

    Article  PubMed  CAS  Google Scholar 

  • Raghav SK, Gupta B, Shrivastava A, Das HR (2007) Inhibition of lipopolysaccharide-inducible nitric oxide synthase and IL-1β through suppression of NF-κB activation by 3-(1′-1′-dimethyl-allyl)-6-hydroxy-7-methoxy-coumarin isolated from Ruta graveolens L. Eur J Pharmacol 560:69–80

    Article  PubMed  CAS  Google Scholar 

  • Rakwal R, Agrawal GK, Yonekura M (1999) Separation of proteins from stressed rice (Oryzae sativa L.) leaf tissues by two-dimensional polyacrylamide gel electrophoresis: induction of pathogenesis-related and cellular protectant proteins by jasmonic acid, UV irradiation and copper chloride. Electrophoresis 20:3472–3478

    Article  PubMed  CAS  Google Scholar 

  • Rana B, Sreenivasulu Y (2013) Protein changes during ethanol induced seed germination in Aconitum heterophyllum. Plant Sci 198:27–38

    Article  PubMed  CAS  Google Scholar 

  • Ray S, Patra B, Das-Chatterjee A, Ganguli A, Majumder AL (2010) Identification and organization of chloroplastic and cytosolic L-myo-inositol 1-phosphate synthase coding gene(s) in Oryza sativa: comparison with the wild halophytic rice, Porteresia coarctata. Planta 231:1211–1227

    Article  PubMed  CAS  Google Scholar 

  • Renuse S, Harsha HC, Kumar P, Acharya PK, Sharma J, Goel R, Kumar GS, Raju R, Prasad TS, Slotta T, Pandey A (2012) Proteomic analysis of an unsequenced plant–Mangifera indica. J Proteomics 75:5793–5796

    Article  PubMed  CAS  Google Scholar 

  • Righetti PG, Boschetti E, Lomas L, Citterio A (2006) Protein equalizer technology: the quest for a “democratic proteome”. Proteomics 6:3980–3992

    Article  PubMed  CAS  Google Scholar 

  • Righetti PG, Boschetti E, Fasoli E (2011) Capturing and amplifying impurities from recombinant therapeutic proteins via combinatorial peptide libraries: a proteomic approach. Curr Pharm Biotechnol 12:1537–1547

    Article  PubMed  CAS  Google Scholar 

  • Sarkar A, Rakwal R, Agrawal SB, Shibato J, Ogawa Y, Yoshida Y, Agrawal GK, Agrawal M (2010) Investigating the impact of elevated levels of ozone on tropical wheat using integrated phenotypical, physiological, biochemical, and proteomics approaches. J Proteome Res 9:4565–4584

    Article  PubMed  CAS  Google Scholar 

  • Sehrawat A, Gupta R, Deswal R (2013) Nitric oxide-cold stress signalling crosstalk-evolution of a novel regulatory mechanism. Proteomics. doi:10.1002/pmic.201200445

    PubMed  Google Scholar 

  • Sengupta S, Majumder AL (2009) Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: a physiological and proteomic approach. Planta 229:911–929

    Article  PubMed  CAS  Google Scholar 

  • Sengupta D, Kannan M, Reddy AR (2011) A root proteomics-based insight reveals dynamic regulation of root proteins under progressive drought stress and recovery in Vigna radiata (L.) Wilczek. Planta 233:1111–1127

    Article  PubMed  CAS  Google Scholar 

  • Sinha R, Chattopadhyay S (2011) Changes in the leaf proteome profile of Mentha arvensis in response to Alternaria alternata infection. J Proteomics 74:327–336

    Article  PubMed  CAS  Google Scholar 

  • Sinha R, Bhattacharyya D, Majumdar AB, Datta R, Hazra S, Chattopadhyay S (2013) Leaf proteome profiling of transgenic mint infected with Alternaria alternata. J Proteomics. doi:10.1016/j.jprot.2013.01.020

    Google Scholar 

  • Swatek KN, Graham K, Agrawal GK, Thelen JJ (2011) The 14-3-3 isoforms chi and epsilon differentially bind client proteins from developing Arabidopsis seed. J Proteome Res 10:4076–4087

    Article  PubMed  CAS  Google Scholar 

  • Thelen JJ, Peck S (2007) Quantitative proteomics in plants: choices in abundance. Plant Cell 19:3339–3346

    Article  PubMed  CAS  Google Scholar 

  • Thiellement H, Zivy M, Damerval C, Mechin V (2007) Plant proteomics: methods and protocols. Thiellement H (ed.), vol. 355, Humana Press.

  • Torres NL, Cho K, Shibato J, Hirano M, Kubo A, Masuo Y, Iwahashi H, Jwa NS, Agrawal GK, Rakwal R (2007) Gel-based proteomics reveals potential novel protein markers of ozone stress in leaves of cultivated bean and maize species of Panama. Electrophoresis 28:4369–4381

    Article  PubMed  CAS  Google Scholar 

  • Upadhyay SK, Mishra M, Singh H, Ranjan A, Chandrashekar K, Verma PC, Singh PK, Tuli R (2010) Interaction of Allium sativum leaf agglutinin with midgut brush border membrane vesicles proteins and its stability in Helicoverpa armigera. Proteomics 10:4431–4440

    Article  PubMed  CAS  Google Scholar 

  • Van Wijk KJ (2001) Challenges and prospects of plant proteomics. Plant Physiol 126:501–508

    Article  PubMed  Google Scholar 

  • Veeranagamallaiah G, Jyothsnakumari G, Thippeswamy M, Reddy PCO, Surabhi G-K, Sriranganayakulu G, Mahesh Y, Rajasekhar B, Madhurarekha C, Sudhakar C (2008) Proteomic analysis of salt stress responses in foxtail millet (Setaria italica L. cv. Prasad) seedlings. Plant Sci 175:631–641

    Article  CAS  Google Scholar 

  • Washburn MP, Wolters D, Yates JR III (2001) Large-scale analysis of the proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247

    Article  PubMed  CAS  Google Scholar 

  • Wilkins MR, Sanchez J-C, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, Williams KL (1995) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13:19–50

    Article  Google Scholar 

  • Yadavalli V, Nellaepalli S, Subramanyam R (2011) Proteomic analysis of thylakoid membranes. Methods Mol Biol 684:159–170

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Mr. Raj Agrawal (Database & Webpage Administrator, INPPO) for constantly updating our members on the INPPC information through the INPPO website (www.inppo.com). We would also like to thank the team of INPPO supporting staff for their help and support during the development of INPPC. We would like to express our thanks to Dominique Job for presenting INPPO initiatives at the French-Indian proteomics workshop (2013) in Bangalore. RD thanks Department of Biotechnology and R & D grant from University of Delhi for partial financial support for the work mentioned in the review.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Renu Deswal, Ganesh Kumar Agrawal or Randeep Rakwal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOC 36 kb)

Supplementary Table 2

(DOC 62 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deswal, R., Gupta, R., Dogra, V. et al. Plant proteomics in India and Nepal: current status and challenges ahead. Physiol Mol Biol Plants 19, 461–477 (2013). https://doi.org/10.1007/s12298-013-0198-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-013-0198-y

Keywords

Navigation