Skip to main content

Advertisement

Log in

A clinically relevant bi-cellular murine mammary tumor model as a useful tool for evaluating the effect of retinoic acid signaling on tumor progression

  • Original Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Background

The effect of retinoic acid (RA) on breast cancer progression is controversial. Our objective was to obtain information about breast cancer progression, taking advantage of the ER-negative murine mammary adenocarcinoma model LM38 (LM38-LP constituted by luminal (LEP) and myoepithelial-like cells (MEP), LM38-HP mainly composed of spindle-shaped epithelial cells, and LM38-D2 containing only large myoepithelial cells), and to validate the role of the retinoic acid receptors (RARs) in each cell-type compartment.

Materials and methods

We studied the expression and functionality of the RARs in LM38 cell lines. We analyzed cell growth and cell cycle distribution, apoptosis, the activity of proteases, motility properties, and expression of the molecules involved in these pathways. We also evaluated tumor growth and dissemination in vivo under retinoid treatment.

Results

LM38 cell lines expressed most retinoic receptor isotypes that were functional. However, only the bi-cellular LM38-LP cells responded to retinoids by increasing RARβ2 and CRBP1 expression. The growth of LM38 cell sublines was inhibited by retinoids, first by inducing arrest in MEP cells, then apoptosis in LEP cells. Retinoids induced inhibitory effects on motility, invasiveness, and activity of proteolytic enzymes, mainly in the LM38-LP cell line. In in-vivo assays with the LM38-LP cell line, RA treatment impaired both primary tumor growth and lung metastases dissemination.

Conclusion

These in-vivo and in-vitro results show that to achieve maximum effects of RA on tumor progression both the LEP and MEP cell compartments have to be present, suggesting that the interaction between the LEP and MEP cells is crucial to full activation of the RARs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lakhani SR, O’Hare MJ. The mammary myoepithelial cell—Cinderella or ugly sister? Breast Cancer Res. 2001;3(1):1–4.

    Article  PubMed  CAS  Google Scholar 

  2. Hu M, Yao J, Carroll DK, Weremowicz S, Chen H, Carrasco D, et al. Regulation of in situ to invasive breast carcinoma transition. Cancer Cell. 2008;13(5):394–406.

    Article  PubMed  CAS  Google Scholar 

  3. Gordon LA, Mulligan KT, Maxwell-Jones H, Adams M, Walker RA, Jones JL. Breast cell invasive potential relates to the myoepithelial phenotype. Int J Cancer. 2003;106(1):8–16.

    Article  PubMed  CAS  Google Scholar 

  4. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006;10(6):515–27.

    Article  PubMed  CAS  Google Scholar 

  5. Bumaschny V, Urtreger A, Diament M, Krasnapolski M, Fiszman G, Klein S, et al. Malignant myoepithelial cells are associated with the differentiated papillary structure and metastatic ability of a syngeneic murine mammary adenocarcinoma model. Breast Cancer Res. 2004;6(2):R116–29.

    Article  PubMed  CAS  Google Scholar 

  6. Sopel M. The myoepithelial cell: its role in normal mammary glands and breast cancer. Folia Morphol (Warsz). 2010;69(1):1–14.

    CAS  Google Scholar 

  7. Soprano DR, Qin, P., and Soprano, K.J. 24, 201–221. Retinoic acid receptors and cancers. Annu Rev Nutr. 2004;24:201–21.

    Google Scholar 

  8. Altucci L, Leibowitz MD, Ogilvie KM, de Lera AR, Gronemeyer H. RAR and RXR modulation in cancer and metabolic disease. Nat Rev Drug Discov. 2007;6(10):793–810.

    Article  PubMed  CAS  Google Scholar 

  9. Bastien J, Rochette-Egly C. Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene. 2004;328:1–16.

    Article  PubMed  CAS  Google Scholar 

  10. Rochette-Egly C, Plassat JL, Taneja R, Chambon P. The AF-1 and AF-2 activating domains of retinoic acid receptor-alpha (RARalpha) and their phosphorylation are differentially involved in parietal endodermal differentiation of F9 cells and retinoid-induced expression of target genes. Mol Endocrinol (Baltimore, Md). 2000;14(9):1398–410.

  11. Mark M, Ghyselinck NB, Chambon P. Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu Rev Pharmacol Toxicol Appl Pharmacol. 2006;46:451–80.

    Article  CAS  Google Scholar 

  12. Donato LJ, Suh JH, Noy N. Suppression of mammary carcinoma cell growth by retinoic acid: the cell cycle control gene Btg2 is a direct target for retinoic acid receptor signaling. Cancer Res. 2007;67:609–15.

    Article  PubMed  CAS  Google Scholar 

  13. Altucci L, Rossin A, Raffelsberger W, Reitmair A, Chomienne C, Gronemeyer H. Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand TRAIL. Nat Med. 2001;7(6):680–6.

    Article  PubMed  CAS  Google Scholar 

  14. Kadara H, Tahara E, Kim HJ, Lotan D, Myers J, Lotan R. Involvement of Rac in fenretinide-induced apoptosis. Cancer Res. 2008;68(11):4416–23.

    Article  PubMed  CAS  Google Scholar 

  15. Altucci L, Gronemeyer H. The promise of retinoids to fight against cancer. Nat Rev Cancer. 2001;1(3):181–93.

    Article  PubMed  CAS  Google Scholar 

  16. Kupumbati TS, Cattoretti G, Marzan C, Farias EF, Taneja R, Mira-y-Lopez R. Dominant negative retinoic acid receptor initiates tumor formation in mice. Mol Cancer. 2006;5:12.

    Article  PubMed  Google Scholar 

  17. Mongan NP, Gudas LJ. Diverse actions of retinoid receptors in cancer prevention and treatment. Differentiation. 2007;75(9):853–70.

    Article  PubMed  CAS  Google Scholar 

  18. Simeone AM, Tari AM. How retinoids regulate breast cancer cell proliferation and apoptosis. Cell Mol Life Sci. 2004;61(12):1475–84.

    Article  PubMed  CAS  Google Scholar 

  19. Degos L, Wang ZY. All trans retinoic acid in acute promyelocytic leukemia. Oncogene. 2001;20(49):7140–5.

    Article  PubMed  CAS  Google Scholar 

  20. Freemantle SJ, Guo Y, Dmitrovsky E. Retinoid chemoprevention trials: cyclin D1 in the crosshairs. Cancer Prev Res (Philadelphia, Pa). 2009;2(1):3–6.

    Google Scholar 

  21. Balmer JE, Blomhoff R. Gene expression regulation by retinoic acid. J Lipid Res. 2002;43(11):1773–808.

    Article  PubMed  CAS  Google Scholar 

  22. Swisshelm K, Ryan K, Lee X, Tsou HC, Peacocke M, Sager R. Down-regulation of retinoic acid receptor beta in mammary carcinoma cell lines and its up-regulation in senescing normal mammary epithelial cells. Cell Growth Differ. 1994;5(2):133–41.

    PubMed  CAS  Google Scholar 

  23. Arapshian A, Bertran S, Kuppumbatti YS, Nakajo S, Mira-y-Lopez R. Epigenetic CRBP downregulation appears to be an evolutionarily conserved (human and mouse) and oncogene-specific phenomenon in breast cancer. Mol Cancer. 2004;3:13.

    Article  PubMed  Google Scholar 

  24. Zelent A. PCR cloning of N-terminal RAR isotypes and APL-associated PLZF-RAR alpha fusion proteins. Methods Mol Biol. 1998;89:307–32.

    PubMed  CAS  Google Scholar 

  25. Urtreger AJ, Diament MJ, Ranuncolo SM, Del C, Vidal M, Puricelli LI, Klein SM, et al. New murine cell line derived from a spontaneous lung tumor induces paraneoplastic syndromes. Int J Oncol. 2001;18(3):639–47.

    PubMed  CAS  Google Scholar 

  26. Urtreger AJ, Aguirre Ghiso JA, Werbajh SE, Puricelli LI, Muro AF, Bal de Kier Joff E. Involvement of fibronectin in the regulation of urokinase production and binding in murine mammary tumor cells. Int J Cancer. 1999;82(5):748–53.

    Article  PubMed  CAS  Google Scholar 

  27. Aguirre Ghiso JA, Farias EF, Alonso DF, Bal de Kier Joffe E. Secretion of urokinase and metalloproteinase-9 induced by staurosporine is dependent on a tyrosine kinase pathway in mammary tumor cells. Int J Cancer. 1998;76(3):362–7.

    Google Scholar 

  28. Hoon D, Kitago M, Kim J, Mori T, Piris A, Szyfelbein K, et al. Molecular mechanisms of metastasis. Cancer Metastasis Rev. 2006;25(2):203–20.

    Article  PubMed  CAS  Google Scholar 

  29. Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med. 2006;12(8):895–904.

    Google Scholar 

  30. Niles RM. Signaling pathways in retinoid chemoprevention and treatment of cancer. Mutat Res. 2004;555(1–2):81–96.

    PubMed  CAS  Google Scholar 

  31. Niles RM. Biomarker and animal models for assessment of retinoid efficacy in cancer chemoprevention. Acta Pharmacol Sin. 2007;28(9):1383–91.

    Article  PubMed  CAS  Google Scholar 

  32. Qiu H, Zhang W, El-Naggar AK, Lippman SM, Lin P, Lotan R, et al. Loss of retinoic acid receptor-beta expression is an early event during esophageal carcinogenesis. Am J Pathol. 1999;155(5):1519–23.

    Article  PubMed  CAS  Google Scholar 

  33. Faria TN, Mendelsohn C, Chambon P, Gudas LJ. The targeted disruption of both alleles of RARbeta(2) in F9 cells results in the loss of retinoic acid-associated growth arrest. J Biol Chem. 1999;274(38):26783–8.

    Article  PubMed  CAS  Google Scholar 

  34. Ariga N, Moriya T, Suzuki T, Kimura M, Ohuchi N, Sasano H. Retinoic acid receptor and retinoid X receptor in ductal carcinoma in situ and intraductal proliferative lesions of the human breast. Jpn J Cancer Res. 2000;91(11):1169–76.

    Article  PubMed  CAS  Google Scholar 

  35. Lu M, Mira-y-Lopez R, Nakajo S, Nakaya K, Jing Y. Expression of estrogen receptor alpha, retinoic acid receptor alpha and cellular retinoic acid binding protein II genes is coordinately regulated in human breast cancer cells. Oncogene. 2005;24(27):4362–9.

    Article  PubMed  CAS  Google Scholar 

  36. Fitzgerald P, Teng M, Chandraratna RA, Heyman RA, Allegretto EA. Retinoic acid receptor alpha expression correlates with retinoid-induced growth inhibition of human breast cancer cells regardless of estrogen receptor status. Cancer Res. 1997;57(13):2642–50.

    PubMed  CAS  Google Scholar 

  37. Li R, Faria TN, Boehm M, Nabel EG, Gudas LJ. Retinoic acid causes cell growth arrest and an increase in p27 in F9 wild type but not in F9 retinoic acid receptor beta2 knockout cells. Exp Cell Res. 2004;294(1):290–300.

    Article  PubMed  CAS  Google Scholar 

  38. Boorjian S, Scherr DS, Mongan NP, Zhuang Y, Nanus DM, Gudas LJ. Retinoid receptor mRNA expression profiles in human bladder cancer specimens. Int J Oncol. 2005;26(4):1041–8.

    PubMed  CAS  Google Scholar 

  39. Farias EF, Ong DE, Ghyselinck NB, Nakajo S, Kuppumbatti YS, Mira y Lopez R. Cellular retinol-binding protein I, a regulator of breast epithelial retinoic acid receptor activity, cell differentiation, and tumorigenicity. J Natl Cancer Inst. 2005;97(1):21–9.

    Article  PubMed  CAS  Google Scholar 

  40. Piantedosi R, Ghyselinck N, Blaner WS, Vogel S. Cellular retinol-binding protein type III is needed for retinoid incorporation into milk. J Biol Chem. 2005;280(25):24286–92.

    Article  PubMed  CAS  Google Scholar 

  41. Yang Q, Shan L, Yoshimura G, Nakamura M, Nakamura Y, Suzuma T, et al. 5-aza-2′-deoxycytidine induces retinoic acid receptor beta 2 demethylation, cell cycle arrest and growth inhibition in breast carcinoma cells. Anticancer Res. 2002;22(5):2753–6.

    PubMed  CAS  Google Scholar 

  42. Spinella MJ, Freemantle SJ, Sekula D, Chang JH, Christie AJ, Dmitrovsky E. Retinoic acid promotes ubiquitination and proteolysis of cyclin D1 during induced tumor cell differentiation. J Biol Chem. 1999;274(31):22013–8.

    Article  PubMed  CAS  Google Scholar 

  43. Seewaldt VL, Kim JH, Caldwell LE, Johnson BS, Swisshelm K, Collins SJ. All-trans-retinoic acid mediates G1 arrest but not apoptosis of normal human mammary epithelial cells. Cell Growth Differ. 1997;8(6):631–41.

    PubMed  CAS  Google Scholar 

  44. Yang L, Ostrowski J, Reczek P, Brown P. The retinoic acid receptor antagonist, BMS453, inhibits normal breast cell growth by inducing active TGFbeta and causing cell cycle arrest. Oncogene. 2001;20(55):8025–35.

    Article  PubMed  CAS  Google Scholar 

  45. Dimberg A, Bahram F, Karlberg I, Larsson LG, Nilsson K, Oberg F. Retinoic acid-induced cell cycle arrest of human myeloid cell lines is associated with sequential down-regulation of c-Myc and cyclin E and posttranscriptional up-regulation of p27(Kip1). Blood. 2002;99(6):2199–206.

    Article  PubMed  CAS  Google Scholar 

  46. Guruvayoorappan C, Pradeep CR, Kuttan G. 13-cis-retinoic acid induces apoptosis by modulating caspase-3, bcl-2, and p53 gene expression and regulates the activation of transcription factors in B16F-10 melanoma cells. J Environ Pathol Toxicol Oncol. 2008;27(3):197–207.

    Article  PubMed  CAS  Google Scholar 

  47. Luo P, Lin M, Lin M, Chen Y, Yang B, He Q. Function of retinoid acid receptor alpha and p21 in all-trans-retinoic acid-induced acute T-lymphoblastic leukemia apoptosis. Leuk Lymphoma. 2009;50(7):1183–9.

    Article  PubMed  CAS  Google Scholar 

  48. Toma S, Isnardi L, Riccardi L, Bollag W. Induction of apoptosis in MCF-7 breast carcinoma cell line by RAR and RXR selective retinoids. Anticancer Res. 1998;18(2A):935–42.

    Google Scholar 

  49. Nakagawa S, Fujii T, Yokoyama G, Kazanietz MG, Yamana H, Shirouzu K. Cell growth inhibition by all-trans retinoic acid in SKBR-3 breast cancer cells: involvement of protein kinase Calpha and extracellular signal-regulated kinase mitogen-activated protein kinase. Mol Carcinog. 2003;38(3):106–16.

    Article  PubMed  CAS  Google Scholar 

  50. Zanotto-Filho A, Cammarota M, Gelain DP, Oliveira RB, Delgado-Canedo A, Dalmolin RJ, et al. Retinoic acid induces apoptosis by a non-classical mechanism of ERK1/2 activation. Toxicol In Vitro. 2008;22(5):1205–12.

    Article  PubMed  CAS  Google Scholar 

  51. Bohnsack BL, Lai L, Dolle P, Hirschi KK. Signaling hierarchy downstream of retinoic acid that independently regulates vascular remodeling and endothelial cell proliferation. Genes Dev. 2004;18(11):1345–58.

    Article  PubMed  CAS  Google Scholar 

  52. Webber MM, Waghray A. Urokinase-mediated extracellular matrix degradation by human prostatic carcinoma cells and its inhibition by retinoic acid. Clin Cancer Res. 1995;1(7):755–61.

    PubMed  CAS  Google Scholar 

  53. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev. 2002;2(3):161–74.

    Article  CAS  Google Scholar 

  54. Liu H, Zang C, Fenner MH, Possinger K, Elstner E. PPARgamma ligands and ATRA inhibit the invasion of human breast cancer cells in vitro. Breast Cancer Res Treat. 2003;79(1):63–74.

    Article  PubMed  CAS  Google Scholar 

  55. Adachi Y, Itoh F, Yamamoto H, Iku S, Matsuno K, Arimura Y, et al. Retinoic acids reduce matrilysin (matrix metalloproteinase 7) and inhibit tumor cell invasion in human colon cancer. Tumour Biol. 2001;22(4):247–53.

    Article  PubMed  CAS  Google Scholar 

  56. Mira-y-Lopez R, Reich E, Ossowski L. Modulation of plasminogen activator in rodent mammary tumors by hormones and other effectors. Cancer Res. 1983;43(11):5467–77.

    PubMed  CAS  Google Scholar 

  57. Caliaro MJ, Marmouget C, Guichard S, Mazars P, Valette A, Moisand A, et al. Response of four human ovarian carcinoma cell lines to all-trans retinoic acid: relationship with induction of differentiation and retinoic acid receptor expression. Int J Cancer. 1994;56(5):743–8.

    Article  PubMed  CAS  Google Scholar 

  58. Garcia-Alonso I, Palomares T, Alonso-Varona A, Castro B, Del Olmo M, Portugal V, et al. Effects of all-trans retinoic acid on tumor recurrence and metastasis. Rev Esp Enferm Dig. 2005;97(4):240–8.

    Article  PubMed  CAS  Google Scholar 

  59. Choi Y, Kim SY, Kim SH, Yang J, Park K, Byun Y. Inhibition of tumor growth by biodegradable microspheres containing all-trans-retinoic acid in a human head-and-neck cancer xenograft. Int J Cancer. 2003;107(1):145–8.

    Article  PubMed  CAS  Google Scholar 

  60. Wu Q, Chen YQ, Chen ZM, Chen F, Su WJ. Effects of retinoic acid on metastasis and its related proteins in gastric cancer cells in vivo and in vitro. Acta Pharmacol Sin. 2002;23(9):835–41.

    PubMed  CAS  Google Scholar 

  61. Suzuki S, Kawakami S, Chansri N, Yamashita F, Hashida M. Inhibition of pulmonary metastasis in mice by all-trans retinoic acid incorporated in cationic liposomes. J Control Release. 2006;116(1):58–63.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is dedicated to the memory of Dr Rafael Mira y Lopez. It was supported by grants from the Fogarty International Center, NIH (1 R03 TW007207-01), UBACyT (M003, M243 and U404), and FONCyT (PICT 00417 and PICT 01296. Préstamo BID). Confocal laser scanning microscopy was performed at the MSSM-Microscopy Shared Resource Facility, supported by funding from an NIH-NCI shared resources grant (5R24 CA095823-04), an NSF Major Research Instrumentation grant (DBI-9724504), and an NIH shared instrumentation grant (1 S10 RR0 9145-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Dora Bal de Kier Joffé.

Additional information

L. B. Todaro, M. J. Veloso contributed equally to this paper.

P. B. Campodónico, CONICET Fellow.

About this article

Cite this article

Todaro, L.B., Veloso, M.J., Campodónico, P.B. et al. A clinically relevant bi-cellular murine mammary tumor model as a useful tool for evaluating the effect of retinoic acid signaling on tumor progression. Breast Cancer 20, 342–356 (2013). https://doi.org/10.1007/s12282-012-0342-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-012-0342-5

Keywords

Navigation