Skip to main content
Log in

Decoupled robust control of vehicular platoon with identical controller and rigid information flow

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

Platoon driving has potential to significantly benefit road traffic. This study presents a decoupled robust control strategy for a vehicular platoon with identical feedback controller and rigid information topology. The node dynamics of vehicle with a lower-level controller is assumed to be covered by a multiplicative uncertainty model. The vehicular platoon control system is skillfully decomposed into an uncertain part and a diagonal system by applying linear transformation and eigenvalue decomposition on information flow graph. Then the requirements of robust stability and distance tracking error are equivalent to the H-infinity norm of decoupled sub-systems. Comparative simulations with a non-robust controller and different communication topologies are conducted to demonstrate the robust stability and distance tracking performances of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bierzychudek, M., Sanchez-Pena, R. and Tonina, A. (2013). Robust control of a two-terminal cryogenic current comparator. IEEE Trans. Instrumentation and Measurement 62, 6, 1736–1742.

    Article  Google Scholar 

  • Caveney, D. (2010). Cooperative vehicular safety applications. IEEE Control System Magazine 30, 4, 38–53.

    Article  MathSciNet  Google Scholar 

  • Chan, E., Gilhead, P., Jelinek, P., Krejci, P. and Robinson, T. (2012). Cooperative control of SARTRE automated platoon vehicles. Proc. 19th ITS World Cong., 1–9.

    Google Scholar 

  • Dunbar, W. and Caveney, D. (2012). Distributed receding horizon control of vehicle platoons: Stability and string stability. IEEE Trans. Automatic Control 57, 3, 620–633.

    Article  MathSciNet  Google Scholar 

  • Fax, A. and Murray, R. M. (2004). Information flow and cooperative control of vehicle formations. IEEE Trans. Automatic Control, 49, 1465–1476.

    Article  MathSciNet  Google Scholar 

  • Gao, F. and Li, K. Q. (2007). Hierarchical switching control of longitudinal acceleration with large uncertainties. Int. J. Automotive Technology 8, 3, 351–359.

    Google Scholar 

  • Gao, F., Li, S. E., Kum, D. and Zhang, H. (2015). Synthesis of multiple model switching controllers using theory for systems with large uncertainties. Neurocomputing, 157, 118–124.

    Article  Google Scholar 

  • Gao, F., Li, S. E., Zheng, Y. and Kum, D. (2016). Robust control of heterogeneous vehicular platoon with uncertain dynamics and communication delay. IET Intelligent Transport Systems, 10.1049/iet-its.2015.0205.

    Google Scholar 

  • Gao, F., Li, X. P. and Ming, G. Q. (2014). Adaptive speed control under vehicle and road uncertainties using multiple model approach. Proc. American Control Conf., Portland, 897–902.

    Google Scholar 

  • Guo, G. and Yue, W. (2012). Autonomous platoon control allowing range-limited sensors. IEEE Trans. Vehicular Technology 61, 7, 2901–2912.

    Article  Google Scholar 

  • Herman, I., Martinec, D., Hurak, Z. and Sebek, M. (2014). Harmonic instability of asymmetric bidirectional control of a vehicular platoon. Proc. American Control Conf., 5396–5401.

    Google Scholar 

  • Higashimata, A. and Adachi, K. K. (2001). Design of a headway distance control system for ACC. JSAE Review 22, 1, 15–22.

    Article  Google Scholar 

  • Horn, R. A. and Johnson, C. R. (2012). Matrix Analysis. Cambridge University Press. Cambridge, UK.

    Book  Google Scholar 

  • Kianfar, R., Augusto, B., Ebadighajari, A. and Hakeem, U. (2012). Design and experimental validation of a cooperative driving system in the grand cooperative driving challenge. IEEE Trans. Intelligent Transportation Systems 13, 3, 994–1007.

    Article  Google Scholar 

  • Li, S. B., Gao, F., Cao, D. and Li, K. Q. (2016). Multiple model switching control of vehicle longitudinal dynamics for platoon level automation. IEEE Trans. Vehicular Technology, 10.1109/TVT.2016.25412.

    Google Scholar 

  • Luettel, T., Himmelsbach, M. and Wuensche, J. (2012). Autonomous ground vehicles-Concepts and a path to the future. Proc. IEEE 100, Special Centennial Issue, 1831–1839.

    Google Scholar 

  • Nag, A., Patel, S., Kishore, K. and Akbar, S. A. (2013). A robust based depth control of an autonomous underwater vehicle. Proc. Int. Conf. Advanced Electronic Systems (ICAES), 68–73.

    Chapter  Google Scholar 

  • Naus, G., Vugts, R., Ploeg, J., Van, D. and Steinbuch, M. (2010). String-stable CACC design and experimental validation: A frequency domain approach. IEEE Trans. Vehicular Technology 59, 9, 4268–4279.

    Article  Google Scholar 

  • Nemeth, B. and Gaspar, P. (2010). Road conditions in the design of vehicle speed control using the LPV method. Proc. 18th Mediterranean Conf. Control & Automation (MED).

    Google Scholar 

  • Olfati-Saber, R. and Murray, R. (2004). Consensus problems in networks of agents with switching topology and timedelays. IEEE Trans. Automatic Control, 1520–1533.

    Google Scholar 

  • Ploeg, J., Serrarens, A. F. and Heijenk, G. (2011). Connect & Drive: Design and evaluation of cooperative adaptive cruise control for congestion reduction. J. Modern Transportation, 207–213.

    Google Scholar 

  • Rajamani, R., Choi, S. B., Law, B. K., Hedrick, J. K. and Rrohaska, R. (2000). Design and experimental implementation of longitudinal control for a platoon of automated vehicles. J. Dynamic Systems Measurement and Control 122, 3, 470–476.

    Article  Google Scholar 

  • Shaw, E. and Hedrick, J. (2007). String stability analysis for heterogeneous vehicle strings. Proc. American Control Conf., 3118–3125.

    Google Scholar 

  • Shladover, S., Desoer, C., Hedrick, J., Tomizuka, M. and Walrand, J. (1991). Automated vehicle control developments in the PATH program. IEEE Trans. Vehicular Technology, 40, 114–130.

    Article  Google Scholar 

  • Stankovic, S., Stanojevic, M. and Siljak, D. (2000). Decentralized overlapping control of a platoon of vehicles. IEEE Trans. Control System Technology, 8, 816–831.

    Article  Google Scholar 

  • Swaroop, D., Hedrick, J. K. and Chien, C. C. (1994). A comparison of spacing and headway control laws for automatically controlled vehicles. Vehicle System Dynamics 23, 8, 597–625.

    Article  Google Scholar 

  • Swaroop, D. and Hedrick, J. K. (1999). Constant spacing strategies for platooning in automated highway systems. ASME J. Dynamic System Measure and Control, 121, 462–470.

    Article  Google Scholar 

  • Tsugawa, S., Kato, S. and Aoki, K. (2011). An automated truck platoon for energy saving. Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 4109–4114.

    Google Scholar 

  • Willke, T. L., Tientrakool, P. and Maxemchuk, N. F. (2009). A survey of inter-vehicle communication protocols and their applications. IEEE Trans. Communications Surveys & Tutorials 11, 2, 3–20.

    Article  Google Scholar 

  • Xiao, L. Y. and Cao, F. (2011). Practical string stability of platoon of adaptive cruise control vehicles. IEEE Trans. Intelligent Transportation System 12, 4, 1184–1194.

    Article  Google Scholar 

  • Yadlapalli, S. K., Darbha, S. and Rajagopal, K. R. (2006). Information flow and its relation to stability of the motion of vehicles in a rigid formation. IEEE Trans. Automatic Control 51, 8, 1315–1319.

    Article  MathSciNet  MATH  Google Scholar 

  • Yamamura, Y. and Seto, Y. (2008). An ACC design method for achieving both string stability and ride comfort. J. System Design and Dynamics 2, 4, 979–990.

    Article  Google Scholar 

  • Zhang, J., Wang, F. Y., Wang, K., Lin, W., Xu, X. and Chen, C. (2011). Data-driven intelligent transportation systems: A survey. IEEE Trans. Intelligent Transportation System 12, 4, 1624–1639.

    Article  Google Scholar 

  • Zheng, Y., Li, S., Wang, J. and Wang, L. Y. (2014). Influence of information flow topology on closed-loop stability of vehicle platoon with rigid formation. Proc. 17th Int. Conf. Intelligent Transportation System Conf., 2094–2100.

    Google Scholar 

  • Zhou, J. and Peng, H. (2005). Range policy of adaptive cruise control vehicle for improved flow stability and string stability. IEEE Trans. Intelligent Transportation System 6, 2, 229–237.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, F., Dang, D.F., Huang, S.S. et al. Decoupled robust control of vehicular platoon with identical controller and rigid information flow. Int.J Automot. Technol. 18, 157–164 (2017). https://doi.org/10.1007/s12239-017-0016-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-017-0016-6

Key Words

Navigation