Skip to main content
Log in

FF-10501 induces caspase-8-mediated apoptotic and endoplasmic reticulum stress-mediated necrotic cell death in hematological malignant cells

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

FF-10501 is a novel inhibitor of inosine monophosphate dehydrogenase (IMPDH). Clinical trials of FF-10501 for myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are currently being conducted in the United States. Although it has been shown that FF-10501 induces apoptosis in hematological malignant cells, the intracellular mechanisms of this effect have not been characterized. We conducted an in vitro study to elucidate the mechanisms of FF-10501-induced cell death using 12 hematological malignant cell lines derived from myeloid and lymphoid malignancies. FF-10501 suppressed the growth of each cell line in a dose-dependent manner. However, the clinically relevant dose (40 μM) of FF-10501 induced cell death in three cell lines (MOLM-13, OCI-AML3, and MOLT-3). Investigation of the cell death mechanism suggested that FF-10501 induces both apoptotic and necrotic cell death. FF-10501-induced apoptosis was mediated by caspase-8 activation followed by activation of the mitochondrial pathway in MOLM-13 and MOLT-3 cells. FF-10501 induced necrotic cell death via endoplasmic reticulum stress in OCI-AML3 cells. The present study is the first to identify intracellular pathways involved in FF-10501-induced cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cazzola M, Della Porta MG, Malcovati L. The genetic basis of myelodysplasia and its clinical relevance. Blood. 2013;122(25):4021–34. https://doi.org/10.1182/blood-2013-09-381665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yoshimi A, Abdel-Wahab O. Splicing factor mutations in MDS RARS and MDS/MPN-RS-T. Int J Hematol. 2017;105(6):720–31. https://doi.org/10.1007/s12185-017-2242-0.

    Article  CAS  PubMed  Google Scholar 

  3. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10(3):223–32. https://doi.org/10.1016/S1470-2045(09)70003-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hedstrom L. IMP dehydrogenase: structure, mechanism, and inhibition. Chem Rev. 2009;109(7):2903–28. https://doi.org/10.1021/cr900021w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Collart FR, Huberman E. Cloning and sequence analysis of the human and Chinese hamster inosine-5′-monophosphate dehydrogenase cDNAs. J Biol Chem. 1988;263(30):15769–72.

    CAS  PubMed  Google Scholar 

  6. Natsumeda Y, Ohno S, Kawasaki H, Konno Y, Weber G, Suzuki K. Two distinct cDNAs for human IMP dehydrogenase. J Biol Chem. 1990;265(9):5292–5.

    CAS  PubMed  Google Scholar 

  7. Jackson RC, Weber G, Morris HP. IMP dehydrogenase, an enzyme linked with proliferation and malignancy. Nature. 1975;256(5515):331–3.

    Article  CAS  PubMed  Google Scholar 

  8. Senda M, Natsumeda Y. Tissue-differential expression of two distinct genes for human IMP dehydrogenase (E.C.1.1.1.205). Life Sci. 1994;54(24):1917–26.

    Article  CAS  PubMed  Google Scholar 

  9. Fukui M, Inaba M, Tsukagoshi S, Sakurai Y. New antitumor imidazole derivative, 5-carbamoyl-1H-imidazol-4-yl piperonylate, as an inhibitor of purine synthesis and its activation by adenine phosphoribosyltransferase. Cancer Res. 1982;42(3):1098–102.

    CAS  PubMed  Google Scholar 

  10. Murase M, Iwamura H, Komatsu K, Saito M, Maekawa T, Nakamura T, et al. Lack of cross-resistance to FF-10501, an inhibitor of inosine-5′-monophosphate dehydrogenase, in azacitidine-resistant cell lines selected from SKM-1 and MOLM-13 leukemia cell lines. Pharmacol Res Perspect. 2016;4(1):e00206. https://doi.org/10.1002/prp2.206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ichii M, Oritani K, Murase M, Komatsu K, Yamazaki M, Kyoden R, et al. Molecular targeting of inosine-5′-monophosphate dehydrogenase by FF-10501 promotes erythropoiesis via ROS/MAPK pathway. Leuk Lymphoma. 2018;59(2):448–59. https://doi.org/10.1080/10428194.2017.1339878.

    Article  CAS  PubMed  Google Scholar 

  12. Yang H, Fang Z, Wei Y, Bohannan ZS, Ganan-Gomez I, Pierola AA, et al. Preclinical activity of FF-10501-01, a novel inosine-5′-monophosphate dehydrogenase inhibitor, in acute myeloid leukemia. Leuk Res. 2017;59:85–92. https://doi.org/10.1016/j.leukres.2017.05.016.

    Article  CAS  PubMed  Google Scholar 

  13. Crowley LC, Marfell BJ, Scott AP, Waterhouse NJ. Quantitation of apoptosis and necrosis by annexin V binding, propidium iodide uptake, and flow cytometry. Cold Spring Harb Protoc. 2016;2016:11. https://doi.org/10.1101/pdb.prot087288.

    Article  Google Scholar 

  14. Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 2019;20(3):175–93. https://doi.org/10.1038/s41580-018-0089-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol. 2004;5(11):897–907. https://doi.org/10.1038/nrm1496.

    Article  CAS  PubMed  Google Scholar 

  16. Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 1999;13(15):1899–911.

    Article  CAS  PubMed  Google Scholar 

  17. Vercammen D, Vandenabeele P, Beyaert R, Declercq W, Fiers W. Tumour necrosis factor-induced necrosis versus anti-Fas-induced apoptosis in L929 cells. Cytokine. 1997;9(11):801–8. https://doi.org/10.1006/cyto.1997.0252.

    Article  CAS  PubMed  Google Scholar 

  18. Sano R, Reed JC. ER stress-induced cell death mechanisms. Biochim Biophys Acta. 2013;1833(12):3460–70. https://doi.org/10.1016/j.bbamcr.2013.06.028.

    Article  CAS  PubMed  Google Scholar 

  19. Malek K, Boosalis MS, Waraska K, Mitchell BS, Wright DG. Effects of the IMP-dehydrogenase inhibitor, Tiazofurin, in bcr-abl positive acute myelogenous leukemia. Part I. In vivo studies. Leuk Res. 2004;28(11):1125–36. https://doi.org/10.1016/j.leukres.2004.03.003.

    Article  CAS  PubMed  Google Scholar 

  20. Kozhevnikova EN, van der Knaap JA, Pindyurin AV, Ozgur Z, van Ijcken WF, Moshkin YM, et al. Metabolic enzyme IMPDH is also a transcription factor regulated by cellular state. Mol Cell. 2012;47(1):133–9. https://doi.org/10.1016/j.molcel.2012.04.030.

    Article  CAS  PubMed  Google Scholar 

  21. Kokeny S, Papp J, Weber G, Vaszko T, Carmona-Saez P, Olah E. Ribavirin acts via multiple pathways in inhibition of leukemic cell proliferation. Anticancer Res. 2009;29(6):1971–80.

    CAS  PubMed  Google Scholar 

  22. Tzoneva G, Dieck CL, Oshima K, Ambesi-Impiombato A, Sanchez-Martin M, Madubata CJ, et al. Clonal evolution mechanisms in NT5C2 mutant-relapsed acute lymphoblastic leukaemia. Nature. 2018;553(7689):511–4. https://doi.org/10.1038/nature25186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ishitsuka K, Hideshima T, Hamasaki M, Raje N, Kumar S, Podar K, et al. Novel inosine monophosphate dehydrogenase inhibitor VX-944 induces apoptosis in multiple myeloma cells primarily via caspase-independent AIF/Endo G pathway. Oncogene. 2005;24(38):5888–96. https://doi.org/10.1038/sj.onc.1208739.

    Article  CAS  PubMed  Google Scholar 

  24. Vandenabeele P, Vanden Berghe T, Festjens N. Caspase inhibitors promote alternative cell death pathways. Sci STKE. 2006;2006(358):pe44. https://doi.org/10.1126/stke.3582006pe44.

    Article  PubMed  Google Scholar 

  25. Lin Y, Devin A, Rodriguez Y, Liu ZG. Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev. 1999;13(19):2514–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chan FK, Shisler J, Bixby JG, Felices M, Zheng L, Appel M, et al. A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J Biol Chem. 2003;278(51):51613–21. https://doi.org/10.1074/jbc.M305633200.

    Article  CAS  PubMed  Google Scholar 

  27. Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 2003;114(2):181–90.

    Article  CAS  PubMed  Google Scholar 

  28. Jonsson CA, Carlsten H. Inosine monophosphate dehydrogenase (IMPDH) inhibition in vitro suppresses lymphocyte proliferation and the production of immunoglobulins, autoantibodies and cytokines in splenocytes from MRLlpr/lpr mice. Clin Exp Immunol. 2001;124(3):486–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liao LX, Song XM, Wang LC, Lv HN, Chen JF, Liu D, et al. Highly selective inhibition of IMPDH2 provides the basis of antineuroinflammation therapy. Proc Natl Acad Sci USA. 2017;114(29):E5986–94. https://doi.org/10.1073/pnas.1706778114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wesselborg S, Engels IH, Rossmann E, Los M, Schulze-Osthoff K. Anticancer drugs induce caspase-8/FLICE activation and apoptosis in the absence of CD95 receptor/ligand interaction. Blood. 1999;93(9):3053–63.

    Article  CAS  PubMed  Google Scholar 

  31. Engels IH, Stepczynska A, Stroh C, Lauber K, Berg C, Schwenzer R, et al. Caspase-8/FLICE functions as an executioner caspase in anticancer drug-induced apoptosis. Oncogene. 2000;19(40):4563–73. https://doi.org/10.1038/sj.onc.1203824.

    Article  CAS  PubMed  Google Scholar 

  32. Chaigne-Delalande B, Guidicelli G, Couzi L, Merville P, Mahfouf W, Bouchet S, et al. The immunosuppressor mycophenolic acid kills activated lymphocytes by inducing a nonclassical actin-dependent necrotic signal. J Immunol. 2008;181(11):7630–8.

    Article  CAS  PubMed  Google Scholar 

  33. Falini B, Nicoletti I, Martelli MF, Mecucci C. Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc + AML): biologic and clinical features. Blood. 2007;109(3):874–85. https://doi.org/10.1182/blood-2006-07-012252.

    Article  CAS  PubMed  Google Scholar 

  34. Leong SM, Tan BX, Bte Ahmad B, Yan T, Chee LY, Ang ST, et al. Mutant nucleophosmin deregulates cell death and myeloid differentiation through excessive caspase-6 and -8 inhibition. Blood. 2010;116(17):3286–96. https://doi.org/10.1182/blood-2009-12-256149.

    Article  CAS  PubMed  Google Scholar 

  35. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  36. Fulda S. Therapeutic exploitation of necroptosis for cancer therapy. Semin Cell Dev Biol. 2014;35:51–6. https://doi.org/10.1016/j.semcdb.2014.07.002.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Miyuki Saisho, Eri Sakai-Nagamatsu, Misato Yagi, Mami Sato, Miku Kamekou, Ayaka Tsuzuki, Takafumi Kuroiwa, Midori Suekane, Kousuke Iwasaki, and Shuntarou Nakamura for their help with the experiments.

Funding

This research was partially supported by FUJIFILM Corporation.

Author information

Authors and Affiliations

Authors

Contributions

TM and SJ designed the research study. TM performed the experiments. TM, SJ, KT, and MM analyzed and interpreted the data. TM drafted the manuscript. SJ, KM, YT, JS, and SH revised the manuscript. SJ provided final approval of the current version for submission.

Corresponding author

Correspondence to Taichi Matsumoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsumoto, T., Jimi, S., Migita, K. et al. FF-10501 induces caspase-8-mediated apoptotic and endoplasmic reticulum stress-mediated necrotic cell death in hematological malignant cells. Int J Hematol 110, 606–617 (2019). https://doi.org/10.1007/s12185-019-02722-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-019-02722-x

Keywords

Navigation