Skip to main content
Log in

Potential role of activated factor VIII (FVIIIa) in FVIIa/tissue factor-dependent FXa generation in initiation phase of blood coagulation

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Factor VIIa/tissue factor (FVIIa/TF) initiates blood coagulation by promoting FXa generation (extrinsic-Xa). Subsequent generation of intrinsic FXa (intrinsic-Xa) amplifies thrombin formation. Previous studies suggested that FVIIa/TF activates FVIII rapidly in immediate coagulation reactions, and FVIIa/TF/FXa activates FVIII prior to thrombin-dependent feedback. We investigated FVIII/FVIIa/TF/FXa relationships in early coagulation mechanisms. Total FXa generated by FVIIa/TF and FVIIa/TF-activated FVIII (FVIIIaVIIa/TF) was 22.6 ± 1.7 nM (1 min); total FXa with FVIIa-inhibitor was 3.4 ± 0.7 nM, whereas FXa generated by FVIIa/TF or FVIII/TF was 10.4 ± 1.1 or 0.74 ± 0.14 nM, respectively. Little Xa was generated by FVIII alone, suggesting that intrinsic-Xa mechanisms were mediated by FVIIIaVIIa/TF and FVIII/TF in the initiation phase. Intrinsic-Xa was delayed somewhat by von Willebrand factor (VWF). FVIII activation by FXa with FVIIa/TF was comparable to activation with Glu-Gly-Arg-inactivated-FVIIa/TF. TF counteracted the inhibitory effects of VWF on FXa-induced FVIII activation mediated by Arg372 cleavage. The FVIII-C2 domain bound to cytoplasmic domain-deleted TF (TF1−243), and VWF blocked this binding by > 80%, indicating an overlap between VWF- and TF1−243-binding site(s) on C2. Overall, these data suggest that FVIII-associated intrinsic-Xa, governed by both FVIIa/TF-induced and FXa-induced FVIII activation mediated by FVIII-TF interactions, together with FVIIa-dependent extrinsic-Xa mechanisms, may be central to the initiation phase of coagulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mann KG, Nesheim ME, Church WR, Haley P, Krishnaswamy S. Surface-dependent reactions of the vitamin K-dependent enzyme complexes. Blood. 1990;76:1–16.

    CAS  PubMed  Google Scholar 

  2. Vehar GA, Keyt B, Eaton D, Rodriguez H, O’Brien DP, Rotblat F, et al. Structure of human factor VIII. Nature. 1984;312:337–42.

    Article  CAS  PubMed  Google Scholar 

  3. Wood WI, Capon DJ, Simonsen CC, Eaton DL, Gitschier J, Keyt B, et al. Expression of active human factor VIII from recombinant DNA clones. Nature. 1984;312:330–7.

    Article  CAS  PubMed  Google Scholar 

  4. Lollar P, Hill-Eubanks DC, Parker CG. Association of the factor VIII light chain with von Willebrand factor. J Biol Chem. 1988;263:10451–10445.

    CAS  PubMed  Google Scholar 

  5. Fay PJ. Activation of factor VIII and mechanisms of cofactor action. Blood Rev. 2004;18:1–15.

    Article  PubMed  Google Scholar 

  6. Eaton D, Rodriguez H, Vehar GA. Correlation of specific cleavages by thrombin, factor Xa, and activated protein C with activation and inactivation of factor VIII coagulant activity. Biochemistry. 1986;25:505–12.

    Article  CAS  PubMed  Google Scholar 

  7. Regan LM, Fay PJ. Cleavage of factor VIII light chain is required for maximal generation of factor VIIIa activity. J Biol Chem. 1995;270:8546–52.

    Article  CAS  PubMed  Google Scholar 

  8. Hagen FS, Gray CL, O’Hara P, Grant FJ, Saari GC, Woodbury RG, et al. Characterization of a cDNA coding for human factor VII. Proc Natl Acad Sci USA. 1986;83:2412–6.

    Article  CAS  PubMed  Google Scholar 

  9. Komiyama Y, Pedersen AH, Kisiel W. Proteolytic activation of human factors IX and X by recombinant human factor VIIa: effects of calcium, phospholipids, and tissue factor. Biochemistry. 1990;29:9418–25.

    Article  CAS  PubMed  Google Scholar 

  10. Hoffman M, Monroe DM. rd. A cell-based model of hemostasis. Thromb Haemost. 2001;85:958–65.

    Article  CAS  PubMed  Google Scholar 

  11. Hoffman M. Remodeling the blood coagulation cascade. J Thromb Thrombolysis. 2003;16:17–20.

    Article  CAS  PubMed  Google Scholar 

  12. Klintman J, Astermark J, Berntorp E. Combination of FVIII and bypassing agent potentiates in vitro thrombin production in haemophilia A inhibitor plasma. Br J Haematol. 2010;151:381–6.

    Article  CAS  PubMed  Google Scholar 

  13. Warren DL, Morrissey JH, Neuenschwander PF. Proteolysis of blood coagulation factor VIII by the factor VIIa-tissue factor complex: generation of an inactive factor VIII cofactor. Biochemistry. 1999;38:6529–36.

    Article  CAS  PubMed  Google Scholar 

  14. Soeda T, Nogami K, Matsumoto T, Ogiwara K, Shima M. Mechanisms of factor VIIa-catalyzed activation of factor VIII. J Thromb Haemost. 2010;8:2494–503.

    Article  CAS  PubMed  Google Scholar 

  15. Yada K, Nogami K, Ogiwara K, Shibata M, Shima M. Effects of anti-factor VIII inhibitor antibodies on factor VIIa/tissue factor-catalysed activation and inactivation of factor VIII. Thromb Haemost. 2011;105:989–98.

    Article  CAS  PubMed  Google Scholar 

  16. Yada K, Nogami K, Ogiwara K, Shima M. Activated prothrombin complex concentrate (APCC)-mediated activation of factor (F)VIII in mixtures of FVIII and APCC enhances hemostatic effectiveness. J Thromb Haemost. 2013;11:902–10.

    Article  CAS  PubMed  Google Scholar 

  17. Nogami K, Matsumoto T, Yada K, Ogiwara K, Furukawa S, Shida Y, et al. Factor (F)VIII/VIIa enhances global haemostatic function in the co-presence of bypassing agents and FVIII among patients with haemophilia A with inhibitor. Br J Haematol. 2018;181:528–36.

    Article  CAS  PubMed  Google Scholar 

  18. Kamikubo Y, Mendolicchio GL, Zampolli A, Marchese P, Rothmeier AS, Orje JN, et al. Selective factor VIII activation by the tissue factor-factor VIIa-factor Xa complex. Blood. 2017;130:1661–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Foster PA, Fulcher CA, Houghten RA, de Graaf Mahoney S, Zimmerman TS. Localization of the binding regions of a murine monoclonal anti-factor VIII antibody and a human anti-factor VIII alloantibody, both of which inhibit factor VIII procoagulant activity, to amino acid residues threonine351-serine365 of the factor VIII heavy chain. J Clin Invest. 1988;82:123–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shima M, Scandella D, Yoshioka A, Nakai H, Tanaka I, Kamisue S, et al. A factor VIII neutralizing monoclonal antibody and a human inhibitor alloantibody recognizing epitopes in the C2 domain inhibit factor VIII binding to von Willebrand factor and to phosphatidylserine. Thromb Haemost. 1993;69:240–6.

    Article  CAS  PubMed  Google Scholar 

  21. Nogami K, Shima M, Nakai H, Tanaka I, Suzuki H, Morichika S, et al. Identification of a factor VIII peptide, residues 2315–2330, which neutralizes human factor VIII C2 inhibitor alloantibodies: requirement of Cys2326 and Glu2327 for maximum effect. Br J Haematol. 1999;107:196–203.

    Article  CAS  PubMed  Google Scholar 

  22. Okuda M, Yamamoto Y. Usefulness of synthetic phospholipids in measurement of activated partial thromboplastin time: a new preparation procedure to reduce batch difference. Clin Lab Haematol. 2004;26:215–23.

    Article  CAS  PubMed  Google Scholar 

  23. Nogami K, Wakabayashi H, Schmidt K, Fay PJ. Altered interactions between the A1 and A2 subunits of factor VIIIa following cleavage of A1 subunit by factor Xa. J Biol Chem. 2003;278:1634–41.

    Article  CAS  PubMed  Google Scholar 

  24. Nogami K, Nishiya K, Saenko EL, Takeyama M, Ogiwara K, Yoshioka A, et al. Identification of plasmin-interactive sites in the light chain of factor VIII responsible for proteolytic cleavage at Lys36. J Biol Chem. 2009;284:6934–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Takeshima K, Smith C, Tait J, Fujikawa K. The preparation and phospholipid binding property of the C2 domain of human factor VIII. Thromb Haemost. 2003;89:788–94.

    Article  CAS  PubMed  Google Scholar 

  26. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  PubMed  Google Scholar 

  27. Lollar P, Fay PJ, Fass DN. Factor VIII and factor VIIIa. Methods Enzymol. 1993;222:128–43.

    Article  CAS  PubMed  Google Scholar 

  28. Saenko EL, Shima M, Rajalakshmi KJ, Scandella D. A role for the C2 domain of factor VIII in binding to von Willebrand factor. J Biol Chem. 1994;269:11601–5.

    CAS  PubMed  Google Scholar 

  29. Broze GJ, Girard TJ. Tissue factor pathway inhibitor: structure-function. Front Biosci (Landmark Ed). 2012;17:262–80.

    Article  CAS  Google Scholar 

  30. Wood JP, Ellery PE, Maroney SA, Mast AE. Biology of tissue factor pathway inhibitor. Blood. 2014;123:2934–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lupu C, Lupu F, Dennehy U, Kakkar VV, Scully MF. Thrombin induces the redistribution and acute release of tissue factor pathway inhibitor from specific granules within human endothelial cells in culture. Arterioscler Thromb Vasc Biol. 1995;15:2055–62.

    Article  CAS  PubMed  Google Scholar 

  32. Nogami K, Lapan KA, Zhou Q, Wakabayashi H, Fay PJ. Identification of a factor Xa-interactive site within residues 337–372 of the factor VIII heavy chain. J Biol Chem. 2004;279:15763–71.

    Article  CAS  PubMed  Google Scholar 

  33. Koedam JA, Hamer RJ, Beeser-Visser NH, Bouma BN, Sixma JJ. The effect of von Willebrand factor on activation of factor VIII by factor Xa. Eur J Biochem. 1990;189:229–34.

    Article  CAS  PubMed  Google Scholar 

  34. Nogami K, Shima M, Hosokawa K, Suzuki T, Koide T, Saenko EL, et al. Role of factor VIII C2 domain in factor VIII binding to factor Xa. J Biol Chem. 1999;274:31000–7.

    Article  CAS  PubMed  Google Scholar 

  35. Gilbert GE, Furie BC, Furie B. Binding of human factor VIII to phospholipid vesicles. J Biol Chem. 1990;265:815–22.

    CAS  PubMed  Google Scholar 

  36. Gajsiewicz JM, Morrissey JH. Structure-function relationship of the interaction between tissue factor and factor VIIa. Semin Thromb Hemost. 2015;41:682–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Albert T, Egler C, Jakuschev S, Schuldenzucker U, Schmitt A, Brokemper O, et al. The B-cell epitope of the monoclonal anti-factor VIII antibody ESH8 characterized by peptide array analysis. Thromb Haemost. 2008;99:634–7.

    Article  CAS  PubMed  Google Scholar 

  38. Motton D, Mackman N, Tilley R, Rutledge JC. Postprandial elevation of tissue factor antigen in the blood of healthy adults. Thromb Haemost. 2005;94:504–9.

    Article  CAS  PubMed  Google Scholar 

  39. Nogami K, Shima M, Giddings JC, Takeyama M, Tanaka I, Yoshioka A. Relationship between the binding sites for von Willebrand factor, phospholipid, and human factor VIII C2 inhibitor alloantibodies within the factor VIII C2 domain. Int J Hematol. 2007;85:317–22.

    Article  CAS  PubMed  Google Scholar 

  40. Soeda T, Nogami K, Nishiya K, Takeyama M, Ogiwara K, Sakata Y, et al. The factor VIIIa C2 domain (residues 2228–2240) interacts with the factor IXa Gla domain in the factor Xase complex. J Biol Chem. 2009;284:3379–88.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partly supported by a Grant-in-Aid for Scientific Research (KAKENHI) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) to KN (15K09663 and 18K07885) and by a grand of Bayer Special Project Awards (KN).

Author information

Authors and Affiliations

Authors

Contributions

SF; performed experiments, interpreted the data, made the figures, and wrote the paper, KN; designed the research, interpreted the data, wrote the paper, edited the manuscript, and approved the final version to be published, KO; performed experiments and interpreted the data, MS; supervised the studies.

Corresponding author

Correspondence to Keiji Nogami.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 8183 KB)

Supplementary material 2 (TIFF 8183 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furukawa, S., Nogami, K., Ogiwara, K. et al. Potential role of activated factor VIII (FVIIIa) in FVIIa/tissue factor-dependent FXa generation in initiation phase of blood coagulation. Int J Hematol 109, 390–401 (2019). https://doi.org/10.1007/s12185-019-02611-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-019-02611-3

Keywords

Navigation