Skip to main content
Log in

β-Thalassemia intermedia: a comprehensive overview and novel approaches

  • Review Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

β-Thalassemia intermedia is a clinical condition of intermediate gravity between β-thalassemia minor, the asymptomatic carrier, and β-thalassemia major, the transfusion-dependent severe anemia. It is characterized by a significant clinical polymorphism, which is attributable to its genetic heterogeneity. Ineffective erythropoiesis, chronic anemia, and iron overload contribute to the clinical complications of thalassemia intermedia through stepwise pathophysiological mechanisms. These complications, including splenomegaly, extramedullary erythropoiesis, iron accumulation, leg ulcers, thrombophilia, and bone abnormalities can be managed via fetal hemoglobin induction, occasional transfusions, chelation, and in some cases, stem cell transplantation. Given its clinical diversity, thalassemia intermedia patients require tailored approaches to therapy. Here we present an overview and novel approaches to the genetic basis, pathophysiological mechanisms, clinical complications, and optimal management of thalassemia intermedia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Weatherall DJ. The definition and epidemiology of non-transfusion-dependent thalassemia. Blood Rev. 2012;26(Suppl 1):S3–6.

    Article  PubMed  Google Scholar 

  2. Taher AT, Vinchinsky E, Musallam KM, Cappellini MD, Viprakasit V, editors. Guidelines for the management of non-transfusion dependent thalassaemia (NTDT). Nicosa: Thalassaemia International Federation; 2013.

    Google Scholar 

  3. Musallam KM, Rivella S, Vichinsky E, Rachmilewitz EA. Non-transfusion-dependent thalassemias. Haematologica. 2013;98(6):833–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bazarbachi AA, Chaya BF, Moukhadder HM, Taher AT. Non-transfuison-dependent thalassemia: a panoramic survey from pathophysiology to treatment. Eur Med J. 2016;1(4):53–61.

    Google Scholar 

  5. Taher AT, Musallam KM, Karimi M, El-Beshlawy A, Belhoul K, Daar S, et al. Overview on practices in thalassemia intermedia management aiming for lowering complication rates across a region of endemicity: the Optimal Care study. Blood. 2010;115(10):1886–92.

    Article  PubMed  CAS  Google Scholar 

  6. Haddad A, Tyan P, Radwan A, Mallat N, Taher A. β-Thalassemia intermedia: a bird’s-eye view. Turk J Haematol. 2014;31(1):5–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Karimi M, Cohan N, De Sanctis V, Mallat NS, Taher A. Guidelines for diagnosis and management of beta-thalassemia intermedia. Pediatr Hematol Oncol. 2014;31(7):583–96.

    Article  PubMed  CAS  Google Scholar 

  8. Thein SL. Genetic insights into the clinical diversity of β-thalassaemia. Br J Haematol. 2004;124(3):264–74.

    Article  PubMed  CAS  Google Scholar 

  9. Patrinos GP, Giardine B, Riemer C, Miller W, Chui DH, Anagnou NP, et al. Improvements in the HbVar database of human hemoglobin variants and thalassemia mutations for population and sequence variation studies. Nucleic Acids Res. 2004;32((Database issue)):D537–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Taher AT, Musallam KM, Cappellini MD. Thalassaemia intermedia: an update. Mediterr J Hematol Infect Dis. 2009;1(1):e2009004.

    PubMed  PubMed Central  Google Scholar 

  11. Asadov CD, Abdulalimov ER, Mammadova TA, Qafarova SN, Guliyeva YJ, Tuli A, et al. Identification of two rare β-globin gene mutations in a patient with β-thalassemia intermedia from Azerbaijan. Hemoglobin. 2013;37:291–6.

    Article  PubMed  CAS  Google Scholar 

  12. Viprakasit V, Gibbons RJ, Broughton BC, Tolmie JL, Brown D, Lunt P, et al. Mutations in the general transcription factor TFIIH result in beta-thalassaemia in individuals with trichothiodystrophy. Hum Mol Genet. 2001;10(24):2797–802.

    Article  PubMed  CAS  Google Scholar 

  13. Yu C, Niakan KK, Matsushita M, Stamatoyannopoulos G, Orkin SH, Raskind WH. X-linked thrombocytopenia with thalassemia from a mutation in the amino finger of GATA-1 affecting DNA binding rather than FOG-1 interaction. Blood. 2002;100(6):2040–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Huisman THJ. Levels of HbA2 in heterozygotes and homozygotes for beta-thalassemia mutations: influence of mutations in the CACCC and ATAAA motifs of the beta-globin gene promoter. Acta Haematol. 1997;98(4):187–94.

    Article  PubMed  CAS  Google Scholar 

  15. Canver MC, Smith EC, Sher F, Pinello L, Sanjana NE, Shalem O, et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature. 2015;527(7577):192–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Liu D, Zhang X, Yu L, Cai R, Ma X, Zheng C, et al. KLF1 mutations are relatively more common in a thalassemia endemic region and ameliorate the severity of beta-thalassemia. Blood. 2014;124(5):803–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Traeger-Synodinos J, Harteveld CL, Old JM, et al. EMQN best practice guidelines for molecular and haematology methods for carrier identification and prenatal diagnosis of the haemoglobinopathies. Eur J Hum Genet. 2015;23:426–37.

    Article  PubMed  CAS  Google Scholar 

  18. Haidar R, Mhaidli H, Taher AT. Paraspinal extramedullary hematopoiesis in patients with thalassemia intermedia. Eur Spine J. 2010;19(6):871–8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Musallam KM, Cappellini MD, Wood JC, Taher AT. Iron overload in non-transfusion-dependent thalassemia: a clinical perspective. Blood Rev. 2012;26(Suppl 1):S16–9.

    Article  PubMed  CAS  Google Scholar 

  20. Taher AT, Viprakasit V, Musallam KM, Cappellini MD. Treating iron overload in patients with non-transfusion-dependent thalassemia. Am J Hematol. 2013;88(5):409–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Porter JB, Cappellini MD, Kattamis A, Viprakasit V, Musallam KM, Zhu Z, et al. Iron overload across the spectrum of non-transfusion-dependent thalassaemias: role of erythropoiesis, splenectomy and transfusions. Br J Haematol. 2017;176(2):288–99.

    Article  PubMed  CAS  Google Scholar 

  22. Rivella S. The role of ineffective erythropoiesis in non-transfusion-dependent thalassemia. Blood Rev. 2012;26(Suppl1):S12–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. De Domenico I, Ward DM, Kaplan J. Hepcidin regulation: ironing out the details. J Clin Investig. 2007;117(7):1755–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Peyssonnaux C, Zinkernagel AS, Schuepbach RA, Rankin E, Vaulont S, Haase VH, et al. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J Clin Investig. 2007;117(7):1926–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Tanno T, Bhanu NV, Oneal PA, Goh SH, Staker P, Lee YT, et al. High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin. Nat Med. 2007;13(9):1096–101.

    Article  PubMed  CAS  Google Scholar 

  26. Asadov CD. Immunologic abnormalities in β-thalassemia. J Blood Disord Transf. 2014;5(7):1000224.

    Article  Google Scholar 

  27. Galanello R, Piras S, Barella S, Leoni GB, Cipollina MD, Perseu L, et al. Cholelithiasis and Gilbert’s syndrome in homozygous beta-thalassemia. Br J Haematol. 2001;115(4):926–8.

    Article  PubMed  CAS  Google Scholar 

  28. Borgna-Pignatti C, Rigon F, Merlo L, Chakrok R, Micciolo R, Perseu L, et al. Thalassemia minor, the Gilbert mutation, and the risk of gallstones. Haematologica. 2003;88(10):1106–9.

    PubMed  CAS  Google Scholar 

  29. Maakaron JE, Cappellini MD, Graziadei G, Ayache JB, Taher AT. Hepatocellular carcinoma in hepatitis-negative patients with thalassemia intermedia: a closer look at the role of siderosis. Ann Hepatol. 2013;12(1):142–6.

    PubMed  Google Scholar 

  30. Moukhadder HM, Halawi R, Cappellini MD, Taher AT. Hepatocellular carcinoma as an emerging morbidity in the thalassemia syndromes: a comprehensive review. Cancer. 2017;123(5):751–8.

    Article  PubMed  Google Scholar 

  31. Mallat NS, Mallat SG, Musallam KM, Taher AT. Potential mechanisms for renal damage in beta-thalassemia. J Nephrol. 2013;26(5):821–8.

    Article  PubMed  CAS  Google Scholar 

  32. Ponticelli C, Musallam KM, Cianciulli P, Cappellini MD. Renal complications in transfusion-dependent beta thalassaemia. Blood Rev. 2010;24(6):239–44.

    Article  PubMed  Google Scholar 

  33. Gimmon Z, Wexler MR, Rachmilewitz EA. Juvenile leg ulceration in beta-thalassemia major and intermedia. Plast Reconstr Surg. 1982;69(2):320–5.

    Article  PubMed  CAS  Google Scholar 

  34. Levin C, Koren A. Healing of refractory leg ulcer in a patient with thalassemia intermedia and hypercoagulability after 14 years of unresponsive therapy. Isr Med Assoc J. 2011;13(5):316–8.

    PubMed  Google Scholar 

  35. Al Momen AK. Recombinant human erythropoietin induced rapid healing of a chronic leg ulcer in a patient with sickle cell disease. Acta Haematol. 1991;86(1):46–8.

    Article  PubMed  CAS  Google Scholar 

  36. Afradi H, Saghaei Y, Kachoei ZA, Babaei V, Teimourian S. Treatment of 100 chronic thalassemic leg wounds by plasma-rich platelets. Int J Dermatol. 2017;56(2):171–5.

    Article  PubMed  CAS  Google Scholar 

  37. Taher A, Isma’eel H, Mehio G, Bignamini D, Kattamis A, Rachmilewitz EA, et al. Prevalence of thromboembolic events among 8860 patients with thalassaemia major and intermedia in the Mediterranean area and Iran. Thromb Haemost. 2006;96(4):488–91.

    Article  PubMed  CAS  Google Scholar 

  38. Cappellini MD, Musallam KM, Poggiali E, Taher AT. Hypercoagulability in non-transfusion-dependent thalassemia. Blood Rev. 2012;26(Suppl 1):S20–3.

    Article  PubMed  Google Scholar 

  39. Borenstain-Ben Yashar V, Barenholz Y, Hy-Am E, Rachmilewitz EA, Eldor A. Phosphatidylserine in the outer leaflet of red blood cells from beta-thalassemia patients may explain the chronic hypercoagulable state and thrombotic episodes. Am J Hematol. 1993;44(1):63–5.

    Article  PubMed  CAS  Google Scholar 

  40. Helley D, Eldor A, Girot R, Ducrocq R, Guillin MC, Bezeaud A. Increased procoagulant activity of red blood cells from patients with homozygous sickle cell disease and beta-thalassemia. Thromb Haemost. 1996;76(3):322–7.

    Article  PubMed  CAS  Google Scholar 

  41. Chen S, Eldor A, Barshtein G, Zhang S, Golfarb A, Rachmilewitz E, et al. Enhanced aggregability of red blood cells of beta-thalassemia major patients. Am J Physiol. 1996;270(6 Pt 2):H1951–6.

    PubMed  CAS  Google Scholar 

  42. Ruf A, Pick M, Deutsch V, Patscheke H, Goldfarb A, Rachmilewitz EA, et al. In-vivo platelet activation correlates with red cell anionic phospholipid exposure in patients with beta-thalassaemia major. Br J Haematol. 1997;98(1):51–6.

    Article  PubMed  CAS  Google Scholar 

  43. Winichagoon P, Fucharoen S, Wasi P. Increased circulating platelet aggregates in thalassaemia. Southeast Asian J Trop Med Public Health. 1981;12(4):556–60.

    PubMed  CAS  Google Scholar 

  44. Del Principle D, Menichelli A, Di Giulio S, De Matteis W, Cianciulli P, Papa G. PADGEM/GMP-140 expression on platelet membranes from homozygous beta thalassaemic patients. Br J Haematol. 1993;84(1):111–7.

    Article  Google Scholar 

  45. Pattanapanyasat K, Gonwong S, Chaichompoo P, Noulsri E, Lerdwana S, Sukapirom K, et al. Activated platelet-derived microparticles in thalassaemia. Br J Haematol. 2007;136(3):462–71.

    Article  PubMed  CAS  Google Scholar 

  46. Iolascon A, Giordano P, Storelli S, Li HH, Coppola B, Piga A, et al. Thrombophilia in thalassemia major patients: analysis of genetic predisposing factors. Haematologica. 2001;86(10):1112–3.

    PubMed  CAS  Google Scholar 

  47. Sharma S, Raina V, Chandra J, Narayan S, Sharma S. Lupus anticoagulant and anticardiolipin antibodies in polytransfused beta thalassemia major. Hematology. 2006;11(4):287–90.

    Article  PubMed  Google Scholar 

  48. Eldor A, Rachmilewitz EA. The hypercoagulable state in thalassemia. Blood. 2002;99(1):36–43.

    Article  PubMed  CAS  Google Scholar 

  49. Cappellini MD, Robbiolo L, Bottasso BM, Coppola R, Fiorelli G, Manucci AP. Venous thromboembolism and hypercoagulability in splenectomized patients with thalassaemia intermedia. Br J Haematol. 2000;111(2):467–73.

    Article  PubMed  CAS  Google Scholar 

  50. Aessopos A, Farmakis D, Karagiorga M, Voskaridou E, Loutradi A, Hatziliami A, et al. Cardiac involvement in thalassemia intermedia: a multicenter study. Blood. 2001;97(11):3411–6.

    Article  PubMed  CAS  Google Scholar 

  51. Derchi G, Galanello R, Bina P, Cappellini MD, Piga A, Lai ME, et al. Prevalence and risk factors for pulmonary arterial hypertension in a large group of β-thalassemia patients using right heart catheterization: a Webthal study. Circulation. 2014;129(3):338–45.

    Article  PubMed  CAS  Google Scholar 

  52. Atichartakarn V, Likittanasombat K, Chuncharunee S, Chandanamattha P, Worapongpaiboon S, Angchaisuksi P, et al. Pulmonary arterial hypertension in previously splenectomized patients with beta-thalassemic disorders. Int J Hematol. 2003;78(2):139–45.

    Article  PubMed  Google Scholar 

  53. Atichartakarn V, Chuncharunee S, Chandanamattha P, Likittanasombat K, Aryurachai K. Pulmonary arterial hypertension in previously splenectomized patients with beta-thalassemic disorders. Blood. 2004;103(7):2844–6.

    Article  PubMed  CAS  Google Scholar 

  54. Kurtoglu AU, Kurtoglu E, Temizkan AK. Effect of iron overload on endocrinopathies in patients with beta-thalassemia major and intermedia. Endokrynol Polska. 2012;63(4):260–3.

    CAS  Google Scholar 

  55. Savona-Ventura C, Bonello F. Beta-thalassemia syndromes and pregnancy. Obstetr Gynecol Surv. 1994;49(2):129–37.

    Article  CAS  Google Scholar 

  56. Roumi JE, Moukhadder HM, Graziadei G, Pennisi M, Cappellini MD, Taher AT. Pregnancy in β-thalassemia intermedia at two tertiary care centers in Lebanon and Italy: a follow-up report on fetal and maternal outcomes. Am J Hematol. 2017. https://doi.org/10.1002/ajh.2469 (Epub ahead of print).

    Article  PubMed  Google Scholar 

  57. Nassar AH, Usta IM, Rechda JB, Koussa S, Inati A, Taher AT. Pregnancy in patients with beta-thalassemia intermedia: outcome of mothers and newborns. Am J Hematol. 2006;81(7):499–502.

    Article  PubMed  Google Scholar 

  58. Origa R, Piga A, Quarta G, Forni GL, Longo F, Melpignano A, et al. Pregnancy and beta-thalassemia: an Italian multicenter experience. Haematologica. 2010;95(3):376–81.

    Article  PubMed  Google Scholar 

  59. Petrakos G, Andriopoulos P, Tsironi M. Pregnancy in women with thalassemia: challenges and solutions. Int J Womens Health. 2016;8(8):441–51.

    PubMed  PubMed Central  CAS  Google Scholar 

  60. Perrotta S, Cappellini MD, Bertoldo F, Servedio V, Iolascon G, D’Agruma L, et al. Osteoporosis in beta-thalassaemia major patients: analysis of the genetic background. Br J Haematol. 2000;111(2):461–6.

    Article  PubMed  CAS  Google Scholar 

  61. Haidar R, Musallam KM, Taher AT. Bone disease and skeletal complications in patients with β-thalassemia major. Bone. 2011;48(3):425–32.

    Article  PubMed  Google Scholar 

  62. Sien Y, Yusoff A, Shahar S, Rajikan R. Bone health status among thalassemia children. Int J Public Health Res. 2014;4(1):399–404.

    Google Scholar 

  63. Wonke B, Jensen C, Hanslip JJ, Prescott E, Lalloz M, Layton M, et al. Genetic and acquired predisposing factors and treatment of osteoporosis in thalassaemia major. J Pediatr Endocrinol Metab. 1998;11(Suppl 3):795–801.

    PubMed  Google Scholar 

  64. Vogiatzi MG, Macklin EA, Fung EB, Vichinsky E, Olivieri N, Kwiatkowski J, et al. Prevalence of fractures among the thalassemia syndromes in North America. Bone. 2006;38(4):571–5.

    Article  PubMed  CAS  Google Scholar 

  65. Karimi M, Ghiam AF, Hashemi A, Alinejad S, Soweid M, Kashef S. Bone mineral density in beta-thalassemia major and intermedia. Indian Pediatr. 2007;44(1):29–32.

    PubMed  Google Scholar 

  66. Napoli N, Carmina E, Bucchieri S, Sferrazza C, Rini GB, Di Fede G. Low serum levels of 25-hydroxy vitamin D in adults affected by thalassemia major or intermedia. Bone. 2006;38(6):888–92.

    Article  PubMed  CAS  Google Scholar 

  67. Vogiatzi MG, Autio KA, Mait JE, Schneider R, Lesser M, Giardina PJ. Low bone mineral density in adolescents with beta-thalassemia. Ann N Y Acad Sci. 2005;1054:462–6.

    Article  PubMed  Google Scholar 

  68. Pollak RD, Rachmilewitz E, Blumenfeld A, Idelson M, Goldfarb AW. Bone mineral metabolism in adults with beta-thalassaemia major and intermedia. Br J Haematol. 2000;111(2):902–7.

    CAS  Google Scholar 

  69. Morabito N, Gaudio A, Lasco A, Atteritano M, Pizzoleo MA, Cincotta M, et al. Osteoprotegerin and RANKL in the pathogenesis of thalassemia-induced osteoporosis: new pieces of the puzzle. J Bone Miner Res. 2004;19(5):722–7.

    Article  PubMed  CAS  Google Scholar 

  70. Hashemieh M, Azarkeivan A, Radfar M, Saneifard H, Hosseini-Zijoud SM, Noghabaei G, et al. Prevalence of osteoporosis among thalassemia patients from Zafar adult thalassemia clinic. Iran J Blood Cancer. 2014;6(3):143–8.

    Google Scholar 

  71. Voskaridou E, Kyrtsonis MC, Terpos E, Skordili M, Theodoropoulos I, Bergele A, et al. Bone resorption is increased in young adults with thalassaemia major. Br J Haematol. 2001;112(1):36–41.

    Article  PubMed  CAS  Google Scholar 

  72. Inati A, Noureldine MA, Mansour A, Abbas HA. Endocrine and bone complications in β-thalassemia intermedia: current understanding and treatment. Biomed Res Int. 2015;2015:813098.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Borgna-Pignatti C. Modern treatment of thalassaemia intermedia. Br J Haematol. 2007;138(3):291–304.

    Article  PubMed  CAS  Google Scholar 

  74. Giusti A, Pinto V, Forni GL, Pilotto A. Management of beta-thalassemia-associated osteoporosis. Ann N Y Acad Sci. 2016;1368(1):73–81.

    Article  PubMed  CAS  Google Scholar 

  75. Forni GL, Perrotta S, Giusti A, Quarta G, Pitrolo L, Cappellini MD, et al. Neridronate improves bone mineral density and reduces back pain in 𝛽-thalassaemia patients with osteoporosis: results from a phase 2, randomized, parallel-arm, open-label study. Br J Haematol. 2012;158(2):274–82.

    Article  PubMed  CAS  Google Scholar 

  76. Musallam KM, Khoury B, Abi-Habib R, Bazzi L, Succar J, Halawi R, et al. Health-related quality of life in adults with transfusion-independent thalassaemia intermedia compared to regularly transfused thalassaemia major: new insights. Eur J Haematol. 2011;87(1):73–9.

    Article  PubMed  Google Scholar 

  77. Vichinsky E. Non-transfusion-dependent thalassemia and thalassemia intermedia: epidemiology, complications, and management. Curr Med Res Opin. 2016;32(1):191–204.

    Article  PubMed  Google Scholar 

  78. Taher AT, Musallam KM, Nasreddine W, Hourani R, Inati A, Beydoun A. Asymptomatic brain magnetic resonance imaging abnormalities in splenectomized adults with thalassemia intermedia. J Thromb Haemost. 2010;8(1):54–9.

    Article  PubMed  CAS  Google Scholar 

  79. Shelley EC, Buchanan GR. Vascular complications after splenectomy for hematologic disorders. Blood. 2009;114(14):2861–8.

    Article  CAS  Google Scholar 

  80. Musallam KM, Taher AT, Karimi M, Rachmilewitz EA. Cerebral infarction in β-thalassemia intermedia: breaking the silence. Thromb Res. 2012;130(5):695–702.

    Article  PubMed  CAS  Google Scholar 

  81. Tavazzi D, Duca L, Graziadei G, et al. Membrane-bound iron contributes to oxidative damage of β-thalassaemia intermedia erythrocytes. Br J Haematol. 2001;112:48–50.

    Article  PubMed  CAS  Google Scholar 

  82. Taher AT, Musallam KM, Cappellini MD, Weatherall DJ. Optimal management of beta-thalassaemia intermedia. Br J Haematol. 2011;152(5):512–23.

    Article  PubMed  CAS  Google Scholar 

  83. Easow Mathew M, Sharma A, Aravindakshan R. Splenectomy for people with thalassaemia major or intermedia. Cochrane Database Syst Rev. 2016. https://doi.org/10.1002/14651858.CD010517.pub2.

    Article  PubMed  Google Scholar 

  84. Aessopos A, Kati M, Meletis J. Thalassemia intermedia today: should patients regularly receive transfusions? Transfusion. 2007;47:792–800.

    Article  PubMed  Google Scholar 

  85. Spanos T, Karageorga M, Ladis V, Peristeri J, Hatziliami A, Kattamis C. Red cell alloantibodies in patients with thalassemia. Vox Sang. 1990;58(1):50–5.

    PubMed  CAS  Google Scholar 

  86. Seferi I, Xhetani M, Face M, Burazeri G, Nastas E, Vyshka G. Frequency and specificity of red cell antibodies in thalassemia patients in Albania. Int J Lab Hematol. 2015;37(4):569–74.

    Article  PubMed  CAS  Google Scholar 

  87. Taher AT, Radwan A, Viprakasit V. When to consider transfusion therapy for patients with non-transfusion-dependent thalassaemia. Vox Sang. 2015;108(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  88. Taher AT, Musallam KM, Viprakasit V, Porter JB, Cappellini MD. Iron chelation therapy for non-transfusion-dependent thalassemia (NTDT): a status quo. Blood Cells Mol Dis. 2014;52(2–3):88–90.

    Article  PubMed  CAS  Google Scholar 

  89. Taher A, Hershko C, Cappellini MD. Iron overload in thalassaemia intermedia: reassessment of iron chelation strategies. Br J Haematol. 2009;147(5):634–40.

    Article  PubMed  CAS  Google Scholar 

  90. Musallam KM, Cappellini MD, Wood JC, Motta I, Graziadei G, Tamim H, et al. Elevated liver iron concentration is a marker of increased morbidity in patients with beta thalassemia intermedia. Haematologica. 2011;96(11):1605–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Roghi A, Cappellini MD, Wood JC, Musallam KM, Patrizia P, Fasulo MR, et al. Absence of cardiac siderosis despite hepatic iron overload in Italian patients with thalassemia intermedia: an MRI T2* study. Ann Hematol. 2010;89(6):585–9.

    Article  PubMed  CAS  Google Scholar 

  92. Halawi R, Motta I, Taher A, Cappellini MD. Deferasirox: an orphan drug for chronic iron overload in non-transfusion dependent thalassemia syndromes. Expert Opin Orphan Drugs. 2016;4(6):677–86.

    Article  CAS  Google Scholar 

  93. Kontoghiorghe CN, Kontoghiorghes GJ. Efficacy and safety of iron-chelation therapy with deferoxamine, deferiprone, and deferasirox for the treatment of iron-loaded patients with non-transfusion-dependent thalassemia syndromes. Drug Des Dev Ther. 2016;10:465–81.

    Article  CAS  Google Scholar 

  94. Saliba AN, El Rassi F, Taher AT. Clinical monitoring and management of complications related to chelation therapy in patients with β-thalassemia. Expert Rev Hematol. 2016;9(2):151–68.

    Article  PubMed  CAS  Google Scholar 

  95. Musallam KM, Taher AT, Cappellini MD, Sankaran VG. Clinical experience with fetal hemoglobin induction therapy in patients with β-thalassemia. Blood. 2013;121(12):2199–212.

    Article  PubMed  CAS  Google Scholar 

  96. Foong WC, Ho JJ, Loh CK, Viprakasit V. Hydroxyurea for reducing blood transfusion in non-transfusion dependent beta thalassaemias. Cochrane Database Syst Rev. 2016;10:CD011579.

    PubMed  Google Scholar 

  97. Ehsani MA, Hedayati-Asl AA, Bagheri A, Zeinali S, Rashidi A. Hydroxyurea-induced hematological response in transfusion-independent beta-thalassemia intermedia: case series and review of literature. Pediatr Hematol Oncol. 2009;26(8):560–5.

    Article  PubMed  CAS  Google Scholar 

  98. Asadov C, Alimirzoeva Z, Hasanova M, Mammadova T, Shirinova A. Clinical application of recombinant erythropoietin in beta-thalassemia intermedia. Georgian Med News. 2016;255(6):86–92.

    Google Scholar 

  99. Alimirzoeva Z, Hasanova M, Asadov C. Modern principles of management of thalassemia intermedia. Leuk Res. 2014;38(Supl1):526–7.

    Google Scholar 

  100. Asadov C, Hasanova M, Alimirzoeva Z, Mammadova T. Serum erythropoietin in intermediate β-thalassemias. Klin Lab Diagn. 2012;1:16–8.

    Google Scholar 

  101. Hasanova M, Asadov C, Alimirzoeva Z, Mammadova T, Shirinova A. Efficiency of recombinant erythropoietin administration in hemoglobinopathy H. Georgian Med News. 2014;226:46–9.

    Google Scholar 

  102. Elafy MS, Adly AA, Ismail EA, Elhenawy YI, Elghamry IR. Therapeutic superiority and safety of combined hydroxyurea with recombinant human erythropoietin over hydroxyurea in young β-thalassemia intermedia patients. Eur J Haematol. 2013;91(6):522–33.

    Article  CAS  Google Scholar 

  103. Srivastava A, Shaji RV. Cure for thalassemia major—from allogeneic hematopoietic stem cell transplantation to gene therapy. Haematologica. 2017;102(2):214–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Canver MC, Orkin SH. Customizing the genome as therapy for the β-hemoglobinopathies. Blood. 2016;127(21):2536–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Rivella S. β-thalassemias: paradigmatic diseases for scientific discoveries and development of innovative therapies. Haematologica. 2015;100(4):418–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Libani IV, Guy EC, Melchiori L, Schiro R, Ramos P, Breda L, et al. Decreased differentiation of erythroid cells exacerbates ineffective erythropoiesis in beta-thalassemia. Blood. 2008;112(3):875–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Melchiori L, Gardenghi S, Rivella S. β-Thalassemia: HiJAKing ineffective erythropoiesis and iron overload. Adv Hematol. 2010;2010:938640.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Melchiori L, Gardenghi S, Guy EG, Rachmilewitz E, Giardina PJ, Grady RW, et al. Use of JAK2 inhibitors to limit ineffective erythropoiesis and iron absorption in mice affected by β-thalassemia and other disorders of red cell production. Blood. 2009;114(22):2020.

    Google Scholar 

  109. Aydinok Y, Karakas Z, Cassinerio E, Siritanaratkul N, Kattamis A, Maggio A, et al. Efficacy and safety of ruxolitinib in regularly transfused patients with thalassemia: results from single-arm, multicenter, phase 2a truth study. Blood. 2016;128(22):852.

    Google Scholar 

  110. Gardenghi S, Ramos P, Marongiu MF, Melchiori L, Breda L, Guy E, et al. Hepcidin as a therapeutic tool to limit iron overload and improve anemia in beta-thalassemic mice. J Clin Investig. 2010;120(12):4466–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Parrow NL, Gardenghi S, Rivella S. Prospects for a hepcidin mimic to treat beta-thalassemia and hemochromatosis. Expert Rev Hematol. 2011;4(3):233–5.

    Article  PubMed  Google Scholar 

  112. Preza GC, Ruchala P, Pinon R, Ramos E, Qiao B, Peralta MA, et al. Minihepcidins are rationally designed small peptides that mimic hepcidin activity in mice and may be useful for the treatment of iron overload. J Clin Investig. 2011;121(12):4880–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Du X, She E, Gelbart T, Truksa J, Lee P, Xia Y, et al. The serine protease TMPRSS6 is required to sense iron deficiency. Science. 2008;320(5879):1088–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Finberg KE, Whittlesey RL, Fleming MD, Andrews NC. Down-regulation of Bmp/Smad signaling by Tmprss6 is required for maintenance of systemic iron homeostasis. Blood. 2010;115(18):3817–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Nai A, Pagani A, Mandelli G, Lidonnici MR, Silvestri L, Ferrari G, et al. Deletion of TMPRSS6 attenuates the phenotype in a mouse model of beta-thalassemia. Blood. 2012;119(21):5021–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Guo S, Casu C, Gardenghi S, Booten S, Aghajan M, Peralta R, et al. Reducing TMPRSS6 ameliorates hemochromatosis and beta-thalassemia in mice. J Clin Investig. 2013;123(4):1531–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Schmidt PJ, Toudjarska I, Sendamarai A, Racie T, Milstein S, Bettencourt BR, et al. An RNAi therapeutic targeting Tmprss6 decreases iron overload in Hfe(−/−) mice and ameliorates anemia and iron overload in murine beta-thalassemia intermedia. Blood. 2013;121(7):1200–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Li H, Rybicki AC, Suzuka SM, von Bonsdorff L, Breuer W, Hall CB, et al. Transferrin therapy ameliorates disease in beta-thalassemic mice. Nat Med. 2010;16(2):177–82.

    Article  PubMed  CAS  Google Scholar 

  119. Suragani RN, Cawley SM, Li R, Wallner S, Alexander MJ, Mulivor AW, et al. Modified activin receptor IIB ligand trap mitigates ineffective erythropoiesis and disease complications in murine beta-thalassemia. Blood. 2014;123(25):3864–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Dussiot M, Maciel TT, Fricot A, Chartier C, Negre O, Veiga J, et al. An activin receptor IIA ligand trap corrects ineffective erythropoiesis in beta-thalassemia. Nat Med. 2014;20(4):398–407.

    Article  PubMed  CAS  Google Scholar 

  121. Suragani RN, Cadena SM, Cawley SM, Sako D, Mitchell D, Li R, et al. Transforming growth factor-beta superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis. Nat Med. 2014;20(4):408–14.

    Article  PubMed  CAS  Google Scholar 

  122. Cappellini MD, Porter J, Origa R, Forni GR, Laadem A, Galacteros F, et al. A phase 2a, open-label, dose-finding study to determine the safety and tolerability of sotatercept (ACE-011) in adults with beta (β)-thalassemia: interim results. Blood. 2013;122(21):3448.

    Google Scholar 

  123. Piga AG, Perrotta S, Melpignano A, Borgna-Pignatti C, Voskaridou E, Caruso V, et al. ACE-536 increases hemoglobin and decreases transfusion burden and serum ferritin in adults with beta-thalassemia: preliminary results from a phase 2 study. Blood. 2014;124(21):53.

    Google Scholar 

  124. Piga AG, Perrotta S, Melpignano A, Borgna-Pignatti C, Gamberini MR, Voskaridou E, et al. Luspatercept increases haemoglobin and improves quality of life in non-transfusion dependent adults with β-thalassemia. Haematologica. 2017;102(s1):90.

    Google Scholar 

  125. Anderson ER, Taylor M, Xue X, Ramakrishan SK, Martin A, Xie L, et al. Intestinal HIF2alpha promotes tissue-iron accumulation in disorders of iron overload with anemi. Proc Natl Acad Sci. 2013;110(50):E4922–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Breda L, Casu C, Gardenghi S, Bianchi N, Cartegni L, Narla M, et al. Therapeutic hemoglobin levels after gene transfer in beta-thalassemia mice and in hematopoietic cells of beta-thalassemia and sickle cells disease patients. PLoS One. 2012;7(3):e32345.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F, et al. Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature. 2010;467(7313):318–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Boulad F, Wang X, Qu J, Taylor C, Ferro L, Karponi G, et al. Safe mobilization of CD34+ cells in adults with beta-thalassemia and validation of effective globin gene transfer for clinical investigation. Blood. 2014;123(10):1483–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Hoban MD, Cost GJ, Mendel MC, Romero Z, Kaufman ML, Joglekar AV, et al. Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells. Blood. 2015;125(17):2597–604.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Hoban MD, Orkin SH, Bauer DE. Genetic treatment of a molecular disorder: gene therapy approaches to sickle cell disease. Blood. 2016;127(7):839–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Wienert B, Funnell AP, Norton LJ, Pearson RC, Wilkinson-White LE, Lester K, et al. Editing the genome to introduce a beneficial naturally occurring mutation associated with increased fetal globin. Nat Commun. 2015;6:7085.

    Article  PubMed  CAS  Google Scholar 

  132. Masuda T, Wang X, Maeda M, Canver MC, Sher F, Funnell AP, et al. Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin. Science. 2016;351(6270):285–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Renneville A, Van Galen P, Canver MC, McConkey M, Krill-Burger JM, Dorfman DM, et al. EHMT1 and EHMT2 inhibition induces fetal hemoglobin expression. Blood. 2015;126(16):1930–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Negre O, Eggimann AV, Beuzard Y, Ribeil JA, Bourget P, Borwornpinyo S, et al. Gene therapy of the β-hemoglobinopathies by lentiviral transfer of the βA(T87Q)-Globin gene. Hum Gene Ther. 2016;27(2):148–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Ribeil JA, Cavazzana M, Touzot F, Payen E, Neven B, Lefrere F, et al. Clinical outcomes of gene therapy with BB305 lentiviral vector for sickle cell disease and β-thalassaemia. Haematologica. 2017;102(s1):59.

    Google Scholar 

  136. Pakbaz Z, Treadwell M, Yamashita R, Quirolo K, Foote D, Quill L, et al. Quality of life in patients with thalassemia intermedia compared to thalassemia major. Ann N Y Acad Sci. 2005;1054:457–61.

    Article  PubMed  Google Scholar 

  137. Safizadeh H, Farahmandinia Z, Nejad SS, Pourdamghan N, Araste M. Quality of life in patients with thalassemia major and intermedia in kerman-iran (I.R.). Mediterr J Hematol Infect Dis. 2012;4(1):e2012058.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Vitrano A, Calvaruso G, Lai E, Colletta G, Quota A, Gerardi C, et al. The era of comparable life expectancy between thalassaemia major and intermedia: is it time to revisit the major-intermedia dichotomy? Br J Haematol. 2017;176(1):124–30.

    Article  PubMed  CAS  Google Scholar 

  139. Khoury B, Musallam KM, Abi-Habib R, Bazzi L, Ward ZA, Succar J, et al. Prevalence of depression and anxiety in adult patients with β-thalassemia major and intermedia. Int J Psychiatry Med. 2012;44(4):291–303.

    Article  PubMed  Google Scholar 

  140. Karimi M, Haghpanah S, Farhadi A, Yanvarian M. Genotype-phenotype relationship of patients with β-thalassemia taking hydroxyurea: a 13-year experience in Iran. Int J Hematol. 2012;95(1):51–6.

    Article  PubMed  CAS  Google Scholar 

  141. Amoozgar H, Farhani N, Khodadadi N, Karimi M, Cheriki S. Comparative study of pulmonary circulation and myocardial function in patients with β-thalassemia intermedia with and without hydroxyurea, a case-control study. Eur J Haematol. 2011;87(1):61–7.

    Article  PubMed  CAS  Google Scholar 

  142. Ansari SH, Shamsi TS, Ashraf M, Perveen K, Farzana T, Bohray M, et al. Efficacy of hydroxyurea in providing transfusion independence in β-thalassemia. J Pediatr Hematol Oncol. 2011;33(5):339–43.

    Article  PubMed  CAS  Google Scholar 

  143. Karimi M, Cohan N, Mousavizadeh K, Falahi MJ, Haghpanah S. Adverse effects of hydroxyurea in beta-thalassemia intermedia patients: 10 years’ experience. Pediatr Hematol Oncol. 2010;27(3):205–11.

    Article  PubMed  CAS  Google Scholar 

  144. Rigano P, Pecoraro A, Calzolari R, Troia A, Acusto S, Renada S, et al. Desensitization to hydroxycarbamide following long-term treatment of thalassaemia intermedia as observed in vivo and in primary erythroid cultures from treated patients. Br J Haematol. 2010;151(5):509–15.

    Article  PubMed  CAS  Google Scholar 

  145. Italia KY, Jijina FF, Merchant R, Panjwani S, Nadkarni AH, Sawant PM, et al. ffect of hydroxyurea on the transfusion requirements in patients with severe HbE-beta-thalassaemia: a genotypic and phenotypic study. J Clin Pathol. 2010;63(2):147–50.

    Article  PubMed  CAS  Google Scholar 

  146. Koren A, Levin C, Dgany O, Kransnov T, Elhasid R, Zalman L, et al. Response to hydroxyurea therapy in beta-thalassemia. Am J Hematol. 2008;83(5):366–70.

    Article  PubMed  CAS  Google Scholar 

  147. Bradai M, Pissard S, Abad MT, Dechartes A, Ribeil JA, Landais P, et al. Decreased transfusion needs associated with hydroxyurea therapy in Algerian patients with thalassemia major or intermedia. Transfusion. 2007;47(10):1830–6.

    Article  PubMed  CAS  Google Scholar 

  148. Manusco A, Maggio A, Renda D, Di Marzo R, Rigano P. Treatment with hydroxycarbamide for intermedia thalassaemia: decrease of efficacy in some patients during long-term follow up. Br J Haematol. 2006;133(1):105–6.

    Article  Google Scholar 

  149. Karimi M, Darzi H, Yavarian M. Hematologic and clinical responses of thalassemia intermedia patients to hydroxyurea during 6 years of therapy in Iran. J Pediatr Hematol Oncol. 2005;27(7):380–5.

    Article  PubMed  Google Scholar 

  150. Dixit A, Chatterjee TC, Mishra P, Choudhry DR, Mahapatra M, Tyagi S, et al. Hydroxyurea in thalassemia intermedia—a promising therapy. Ann Hematol. 2005;84(7):441–6.

    Article  PubMed  CAS  Google Scholar 

  151. Bradai M, Abad MT, Pissard S, Lamraoui F, Skopinski L, de Maontalembert M. Hydroxyurea can eliminate transfusion requirements in children with severe beta-thalassemia. Blood. 2003;102(4):1529–30.

    Article  PubMed  CAS  Google Scholar 

  152. Gamberini MR, Fortini M, De Sanctis V. Paraplegia due to spinal cord compression by extramedullary erythropoietic tissue in a thalassaemia intermedia patient with gynecomastia secondary to cirrhosis: successful treatment with hydroxyurea. Pediatr Endocrinol Rev. 2004;2(Suppl 2):316–8.

    PubMed  Google Scholar 

  153. De Paula EV, Lima CSP, Arruda VR, Alberto FL, Saad ST, Costa FF. Long-term hydroxyurea therapy in beta-thalassaemia patients. Eur J Haematol. 2003;70(3):151–5.

    Article  PubMed  Google Scholar 

  154. Cianciulli P, di Toritto TC, Sorrentino F, Sergiacomi L, Massa A, Amadori S. Hydroxyurea therapy in paraparesis and cauda equina syndrome due to extramedullary haematopoiesis in thalassaemia: improvement of clinical and haematological parameters. Eur J Haematol. 2000;64(6):426–9.

    Article  PubMed  CAS  Google Scholar 

  155. Hoppe C, Vichinsky E, Lewis B, Foote D, Styles L. Hydroxyurea and sodium phenylbutyrate therapy in thalassemia intermedia. Am J Hematol. 1999;62(4):221–7.

    Article  PubMed  CAS  Google Scholar 

  156. Chaidos A, Makis A, Hatzimichael E, Tsiara S, Gouva M, Tzouvara E, et al. Treatment of β-thalassemia patients with recombinant human erythropoietin: effect on transfusion requirements and soluble adhesion molecules. Acta Haematol. 2004;111(4):189–95.

    Article  PubMed  CAS  Google Scholar 

  157. Olivieri NF, Freedman MH, Perrine SP, Dover GJ, Sheridan B, Essentine DL, et al. Trial of recombinant human erythropoietin: three patients with thalassemia intermedia. Blood. 1992;80(12):3258–60.

    PubMed  CAS  Google Scholar 

  158. Bourantas K, Economou G, Georgiou J. Administration of high doses of recombinant human erythropoietin to patients with β-thalassemia intermedia: a preliminary trial. Eur J Haematol. 1997;58(1):22–5.

    Article  PubMed  CAS  Google Scholar 

  159. Nisli G, Kavakli K, Vergin C, Oztop S, Cetingül N. Recombinant human erythropoietin trial in thalassemia intermedia. J Trop Pediatr. 1996;42(6):330–4.

    Article  PubMed  CAS  Google Scholar 

  160. Dore F, Bonfigli S, Gaviano E, Pardini S, Longinotti M. Serum transferrin receptor levels in patients with thalassemia intermedia during RHuEPO administration. Haematologica. 1996;81(1):37–9.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chingiz Asadov.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadov, C., Alimirzoeva, Z., Mammadova, T. et al. β-Thalassemia intermedia: a comprehensive overview and novel approaches. Int J Hematol 108, 5–21 (2018). https://doi.org/10.1007/s12185-018-2411-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-018-2411-9

Keywords

Navigation