Skip to main content

Advertisement

Log in

MAGI-1 expression is decreased in several types of human T-cell leukemia cell lines, including adult T-cell leukemia

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Membrane-associated guanylate kinase with inverted orientation protein 1 (MAGI-1) is a cytoplasmic scaffold protein that interacts with various signaling molecules; it negatively controls the cell growth of various types of cells and positively controls cell–cell interaction. In T cells, MAGI-1 has been shown to inhibit Akt activity through its interaction with PTEN and MEK1. In this study we found that MAGI-1 expression is decreased in multiple (9 out of 15) human T-cell leukemia cell lines, including adult T-cell leukemia (ATL), T-cell acute lymphoblastic leukemia and chronic T-cell lymphocytic leukemia. The overexpression of MAGI-1 protein in a MAGI-1-low ATL cell line reduced cellular growth. While the overexpression of MAGI-1 protein in a MAGI-1-low ATL cell line reduced the Akt and MEK activities, the knockdown of MAGI-1 in a MAGI-1-high ATL cell line augmented the Akt and MEK activities. Collectively, the findings of the present study suggest that the decreased expression of MAGI-1 in human T cells contributes to the development of several types of T-cell leukemia, partly through the stimulation of the Akt and MEK pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dobrosotskaya I, Guy RK, James GL. MAGI-1, a membrane-associated guanylate kinase with a unique arrangement of protein–protein interaction domains. J Biol Chem. 1997;272(50):31589–97.

    Article  CAS  PubMed  Google Scholar 

  2. Valiente M, Andres-Pons A, Gomar B, Torres J, Gil A, Tapparel C, et al. Binding of PTEN to specific PDZ domains contributes to PTEN protein stability and phosphorylation by microtubule-associated serine/threonine kinases. J Biol Chem. 2005;280(32):28936–43.

    Article  CAS  PubMed  Google Scholar 

  3. Zmajkovicova K, Jesenberger V, Catalanotti F, Baumgartner C, Reyes G, Baccarini M. MEK1 is required for PTEN membrane recruitment, AKT regulation, and the maintenance of peripheral tolerance. Mol Cell. 2013;50(1):43–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Latorre IJ, Roh MH, Frese KK, Weiss RS, Margolis B, Javier RT. Viral oncoprotein-induced mislocalization of select PDZ proteins disrupts tight junctions and causes polarity defects in epithelial cells. J Cell Sci. 2005;118(Pt 18):4283–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bangham CR, Ratner L. How does HTLV-1 cause adult T-cell leukaemia/lymphoma (ATL)? Curr Opin Virol. 2015;14:93–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yasunaga J, Matsuoka M. Leukemogenesis of adult T-cell leukemia. Int J Hematol. 2003;78(4):312–20.

    Article  PubMed  Google Scholar 

  7. Matsuoka M, Yasunaga J. Human T-cell leukemia virus type 1: replication, proliferation and propagation by Tax and HTLV-1 bZIP factor. Curr Opin Virol. 2013;3(6):684–91.

    Article  CAS  PubMed  Google Scholar 

  8. Akagi T, Ono H, Nyunoya H, Shimotohno K. Characterization of peripheral blood T-lymphocytes transduced with HTLV-I Tax mutants with different trans-activating phenotypes. Oncogene. 1997;14(17):2071–8.

    Article  CAS  PubMed  Google Scholar 

  9. Higuchi M, Fujii M. Distinct functions of HTLV-1 Tax1 from HTLV-2 Tax2 contribute key roles to viral pathogenesis. Retrovirology. 2009;6:117.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Currer R, Van Duyne R, Jaworski E, Guendel I, Sampey G, Das R, et al. HTLV tax: a fascinating multifunctional co-regulator of viral and cellular pathways. Front Microbiol. 2012;3:406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Makokha GN, Takahashi M, Higuchi M, Saito S, Tanaka Y, Fujii M. Human T-cell leukemia virus type 1 Tax protein interacts with and mislocalizes the PDZ domain protein MAGI-1. Cancer Sci. 2013;104(3):313–20.

    Article  CAS  PubMed  Google Scholar 

  12. Iwanaga Y, Tsukahara T, Ohashi T, Tanaka Y, Arai M, Nakamura M, et al. Human T-cell leukemia virus type 1 tax protein abrogates interleukin-2 dependence in a mouse T-cell line. J Virol. 1999;73(2):1271–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Tsubata C, Higuchi M, Takahashi M, Oie M, Tanaka Y, Gejyo F, et al. PDZ domain-binding motif of human T-cell leukemia virus type 1 Tax oncoprotein is essential for the interleukin 2 independent growth induction of a T-cell line. Retrovirology. 2005;2:46.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yamada Y, Sugahara K, Tsuruda K, Nohda K, Hata T, Maeda T, et al. Fas-resistance in ATL cell lines not associated with HTLV-I or FAP-1 production. Cancer Lett. 1999;147(1–2):215–9.

    Article  CAS  PubMed  Google Scholar 

  15. Hori T, Uchiyama T, Tsudo M, Umadome H, Ohno H, Fukuhara S, et al. Establishment of an interleukin 2-dependent human T cell line from a patient with T cell chronic lymphocytic leukemia who is not infected with human T cell leukemia/lymphoma virus. Blood. 1987;70(4):1069–72.

    CAS  PubMed  Google Scholar 

  16. Higuchi M, Tsubata C, Kondo R, Yoshida S, Takahashi M, Oie M, et al. Cooperation of NF-kappaB2/p100 activation and the PDZ domain binding motif signal in human T-cell leukemia virus type 1 (HTLV-1) Tax1 but not HTLV-2 Tax2 is crucial for interleukin-2-independent growth transformation of a T-cell line. J Virol. 2007;81(21):11900–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yasunaga J, Matsuoka M. Leukaemogenic mechanism of human T-cell leukaemia virus type I. Rev Med Virol. 2007;17(5):301–11.

    Article  CAS  PubMed  Google Scholar 

  18. Zaric J, Joseph JM, Tercier S, Sengstag T, Ponsonnet L, Delorenzi M, et al. Identification of MAGI1 as a tumor-suppressor protein induced by cyclooxygenase-2 inhibitors in colorectal cancer cells. Oncogene. 2012;31(1):48–59.

    Article  CAS  PubMed  Google Scholar 

  19. Freeburn RW, Wright KL, Burgess SJ, Astoul E, Cantrell DA, Ward SG. Evidence that SHIP-1 contributes to phosphatidylinositol 3,4,5-trisphosphate metabolism in T lymphocytes and can regulate novel phosphoinositide 3-kinase effectors. J Immunol. 2002;169(10):5441–50.

    Article  CAS  PubMed  Google Scholar 

  20. Yoshita M, Higuchi M, Takahashi M, Oie M, Tanaka Y, Fujii M. Activation of mTOR by human T-cell leukemia virus type 1 Tax is important for the transformation of mouse T cells to interleukin-2-independent growth. Cancer Sci. 2012;103(2):369–74.

    Article  CAS  PubMed  Google Scholar 

  21. Higuchi M, Takahashi M, Tanaka Y, Fujii M. Downregulation of proapoptotic Bim augments IL-2-independent T-cell transformation by human T-cell leukemia virus type-1 Tax. Cancer Med. 2014;3(6):1605–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Feng X, Jia S, Martin TA, Jiang WG. Regulation and involvement in cancer and pathological conditions of MAGI1, a tight junction protein. Anticancer Res. 2014;34(7):3251–6.

    CAS  PubMed  Google Scholar 

  23. Kranjec C, Massimi P, Banks L. Restoration of MAGI-1 expression in human papillomavirus-positive tumor cells induces cell growth arrest and apoptosis. J Virol. 2014;88(13):7155–69.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang G, Liu T, Wang Z. Downregulation of MAGI1 associates with poor prognosis of hepatocellular carcinoma. J Investig Surg. 2012;25(2):93–9.

    Article  Google Scholar 

  25. Zhang G, Wang Z. MAGI1 inhibits cancer cell migration and invasion of hepatocellular carcinoma via regulating PTEN. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2011;36(5):381–5.

    CAS  PubMed  Google Scholar 

  26. Nakahata S, Ichikawa T, Maneesaay P, Saito Y, Nagai K, Tamura T, et al. Loss of NDRG2 expression activates PI3K–AKT signalling via PTEN phosphorylation in ATLL and other cancers. Nat Commun. 2014;5:3393.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kataoka K, Nagata Y, Kitanaka A, Shiraishi Y, Shimamura T, Yasunaga J, et al. Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat Genet. 2015;47(11):1304–15.

    Article  CAS  PubMed  Google Scholar 

  28. Kotelevets L, Van Hengel J, Bruyneel E, Mareel M, Van Roy F, Chastre E. Implication of the MAGI-1b/PTEN signalosome in stabilization of adherens junctions and suppression of invasiveness. FASEB J. 2005;19(1):115–7.

    Article  CAS  PubMed  Google Scholar 

  29. Humbert P, Russell S, Richardson H. Dlg, Scribble and Lgl in cell polarity, cell proliferation and cancer. Bioessays: News Rev Mol Cell Dev Biol. 2003;25(6):542–53.

    Article  CAS  Google Scholar 

  30. Frese KK, Latorre IJ, Chung SH, Caruana G, Bernstein A, Jones SN, et al. Oncogenic function for the Dlg1 mammalian homolog of the Drosophila discs-large tumor suppressor. EMBO J. 2006;25(6):1406–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Hiroyuki Miyoshi and Yasuaki Yamada for providing us with the lentiviral vector system and ATL cell lines, respectively. We thank Takeda Pharmaceutical Company for providing recombinant human IL-2. We also express our gratitude to Misako Tobimatsu for providing technical assistance. This work was supported in part by a grant-in-aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Fujii.

Ethics declarations

Funding

Funding was supported by JSPS KAKENHI Grant Numbers (15H04704, 16K15502).

Conflict of interest

The authors declare no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozakai, T., Takahashi, M., Higuchi, M. et al. MAGI-1 expression is decreased in several types of human T-cell leukemia cell lines, including adult T-cell leukemia. Int J Hematol 107, 337–344 (2018). https://doi.org/10.1007/s12185-017-2359-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-017-2359-1

Keywords

Navigation