Skip to main content
Log in

Mouse immune thrombocytopenia is associated with Th1 bias and expression of activating Fcγ receptors

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Immune thrombocytopenia (ITP) is an autoimmune disease mediated by anti-platelet autoantibodies. We recently established a mouse ITP model exhibiting regulatory T-cell (Treg) deficiency, although only one-third of the Treg-deficient mice developed ITP. To clarify mechanisms involved in the emergence of platelet-specific autoimmunity in this model, we examined the T helper (Th)-cell balance and macrophage Fcγ receptor (FcγR) expression profiles in Treg-deficient mice with and without ITP. Splenocytes from both populations of Treg-deficient mice and control BALB/c mice were subjected to flow cytometry-based analyses to evaluate Th cell subset proportions and the expression of activating and inhibitory FcγRs on macrophages. In addition, IgG subclass distribution of anti-platelet autoantibodies in splenocyte culture supernatants was determined by flow cytometry using IgG subclass-specific antibodies. Treg-deficient ITP mice exhibited a significantly higher proportion of Th1 cells than either Treg-deficient non-ITP or control mice. The predominant anti-platelet autoantibody subclasses in the ITP mice were Th1-associated IgG2a and IgG2b. Furthermore, the FcγRI/FcγRIIB expression ratio in splenic macrophages was higher in the Treg-deficient ITP than in the Treg-deficient non-ITP and control mice. In summary, Th1 polarization and macrophages’ activating FcγR expression profile are associated with the development of ITP in Treg-deficient mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cines DB, Blanchette VS. Immune thrombocytopenic purpura. N Engl J Med. 2002;346:995–1008.

    Article  PubMed  Google Scholar 

  2. McMillan R. The pathogenesis of chronic immune (idiopathic) thrombocytopenic purpura. Semin Hematol. 2000;37:5–9.

    Article  CAS  PubMed  Google Scholar 

  3. McMillan R. The pathogenesis of chronic immune thrombocytopenic purpura. Semin Hematol. 2007;44:S3–11.

    Article  CAS  PubMed  Google Scholar 

  4. Kuwana M, Kaburaki J, Ikeda Y. Autoreactive T cells to platelet GPIIb-IIIa in immune thrombocytopenic purpura: role in production of anti-platelet autoantibody. J Clin Invest. 1998;102:1393–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kuwana M, Okazaki Y, Ikeda Y. Splenic macrophages maintain the anti-platelet autoimmune response via uptake of opsonized platelets in patients with immune thrombocytopenic purpura. J Thromb Haemost. 2009;7:322–9.

    Article  CAS  PubMed  Google Scholar 

  6. Nishimoto T, Satoh T, Takeuchi T, Ikeda Y, Kuwana M. Critical role of CD4(+)CD25(+) regulatory T cells in preventing murine autoantibody-mediated thrombocytopenia. Exp Hematol. 2012;40:279–89.

    Article  CAS  PubMed  Google Scholar 

  7. Nishimoto T, Satoh T, Simpson EK, Ni H, Kuwana M. Predominant autoantibody response to GPIb/IX in a regulatory T-cell-deficient mouse model for immune thrombocytopenia. J Thromb Haemost. 2012;11:369–72.

    Article  Google Scholar 

  8. Nishimoto T, Numajiri M, Nakazaki H, Okazaki Y, Kuwana M. Induction of immune tolerance to platelet antigen by short-term thrombopoietin treatment in a mouse model of immune thrombocytopenia. Int J Hematol. 2014;100:341–4.

    Article  CAS  PubMed  Google Scholar 

  9. Le Campion A, Gagnerault MC, Auffray C, Becourt C, Poitrasson-Riviere M, Lallemand E, et al. Lymphopenia-induced spontaneous T-cell proliferation as a cofactor for autoimmune disease development. Blood. 2009;114:1784–93.

    Article  PubMed  Google Scholar 

  10. Ogawara H, Handa H, Morita K, Hayakawa M, Kojima J, Amagai H, et al. High Th1/Th2 ratio in patients with chronic idiopathic thrombocytopenic purpura. Eur J Haematol. 2003;71:283–8.

    Article  CAS  PubMed  Google Scholar 

  11. Panitsas FP, Theodoropoulou M, Kouraklis A, Karakantza M, Theodorou GL, Zoumbos NC, et al. Adult chronic idiopathic thrombocytopenic purpura (ITP) is the manifestation of a type-1 polarized immune response. Blood. 2004;103:2645–7.

    Article  CAS  PubMed  Google Scholar 

  12. Wang T, Zhao H, Ren H, Guo J, Xu M, Yang R, et al. Type 1 and type 2 T-cell profiles in idiopathic thrombocytopenic purpura. Haematologica. 2005;90:914–23.

    CAS  PubMed  Google Scholar 

  13. Gu D, Chen Z, Zhao H, Du W, Xue F, Ge J, et al. Th1 (CXCL10) and Th2 (CCL2) chemokine expression in patients with immune thrombocytopenia. Hum Immunol. 2010;71:586–91.

    Article  CAS  PubMed  Google Scholar 

  14. Clarkson SB, Bussel JB, Kimberly RP, Valinsky JE, Nachman RL, Unkeless JC. Treatment of refractory immune thrombocytopenic purpura with an anti-Fc gamma-receptor antibody. N Engl J Med. 1986;314:1236–9.

    Article  CAS  PubMed  Google Scholar 

  15. Asahi A, Nishimoto T, Okazaki Y, Suzuki H, Masaoka T, Kawakami Y, et al. Helicobacter pylori eradication shifts monocyte Fcgamma receptor balance toward inhibitory FcgammaRIIB in immune thrombocytopenic purpura patients. J Clin Invest. 2008;118:2939–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Estes DM, Brown WC. Type 1 and type 2 responses in regulation of Ig isotype expression in cattle. Vet Immunol Immunopathol. 2002;90:1–10.

    Article  CAS  PubMed  Google Scholar 

  17. Kaplan C, Valdez JC, Chandrasekaran R, Eibel H, Mikecz K, Glant TT, et al. Th1 and Th2 cytokines regulate proteoglycan-specific autoantibody isotypes and arthritis. Arthritis Res. 2002;4:54–8.

    Article  CAS  PubMed  Google Scholar 

  18. Baudino L, Azeredo da Silveira S, Nakata M, Izui S. Molecular and cellular basis for pathogenicity of autoantibodies: lessons from murine monoclonal autoantibodies. Springer Semin Immunopathol. 2006;28:175–84.

    Article  CAS  PubMed  Google Scholar 

  19. Hashino S, Mori A, Suzuki S, Izumiyama K, Kahata K, Yonezumi M, et al. Platelet recovery in patients with idiopathic thrombocytopenic purpura after eradication of Helicobacter pylori. Int J Hematol. 2003;77:188–91.

    Article  CAS  PubMed  Google Scholar 

  20. Takahashi T, Yujiri T, Tanizawa Y. Helicobacter pylori and chronic ITP: the discrepancy in the clinical responses to eradication therapy might be due to differences in the bacterial strains (letter). Blood. 2004;104:594.

    Article  CAS  PubMed  Google Scholar 

  21. Rocha AM, Souza C, Melo FF, Clementino NC, Marino MC, Rocha GA, et al. Cytokine profile of patients with chronic immune thrombocytopenia affects platelet count recovery after Helicobacter pylori eradication. Br J Haematol. 2015;168:421–8.

    Article  CAS  PubMed  Google Scholar 

  22. Chan H, Moore JC, Finch CN, Warkentin TE, Kelton JG. The IgG subclasses of platelet-associated autoantibodies directed against platelet glycoproteins IIb/IIIa in patients with idiopathic thrombocytopenic purpura. Br J Haematol. 2003;122:818–24.

    Article  CAS  PubMed  Google Scholar 

  23. Tijhuis GJ, Klaassen RJ, Modderman PW, Ouwehand WH, von dem Borne AE. Quantification of platelet-bound immunoglobulins of different class and subclass using radiolabelled monoclonal antibodies: assay conditions and clinical application. Br J Haematol. 1991;77:93–101.

    Article  CAS  PubMed  Google Scholar 

  24. Rosse WF, Adams JP, Yount WJ. Subclasses of IgG antibodies in immune thrombocytopenic purpura (ITP). Br J Haematol. 1980;46:109–14.

    Article  CAS  PubMed  Google Scholar 

  25. Yamamoto M, Vancott JL, Okahashi N, Marinaro M, Kiyono H, Fujihashi K, et al. The role of Th1 and Th2 cells for mucosal IgA responses. Ann NY Acad Sci. 1996;778:64–71.

    Article  CAS  PubMed  Google Scholar 

  26. Liu XG, Ma SH, Sun JZ, Ren J, Shi Y, Sun L, et al. High-dose dexamethasone shifts the balance of stimulatory and inhibitory Fcgamma receptors on monocytes in patients with primary immune thrombocytopenia. Blood. 2011;117:2061–9.

    Article  CAS  PubMed  Google Scholar 

  27. Nishimoto T, Kuwana M. CD4 + CD25 + Foxp3 + regulatory T cells in the pathophysiology of immune thrombocytopenia. Semin Hematol. 2013;50:S43–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Fumiaki Kumagai and Masayoshi Monno (Keio University School of Medicine) for assistance in performing the experiments. This work was supported by a research grant on intractable diseases from the Japanese Ministry of Health, Labor, and Welfare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masataka Kuwana.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

T. Nishimoto: Deceased.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishimoto, T., Okazaki, Y., Numajiri, M. et al. Mouse immune thrombocytopenia is associated with Th1 bias and expression of activating Fcγ receptors. Int J Hematol 105, 598–605 (2017). https://doi.org/10.1007/s12185-016-2172-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-016-2172-2

Keywords

Navigation