Skip to main content
Log in

High expression of REV7 is an independent prognostic indicator in patients with diffuse large B-cell lymphoma treated with rituximab

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

REV7 is a multifunctional protein involved in DNA damage tolerance, cell-cycle regulation, gene expression, and carcinogenesis. Although its expression is reportedly associated with poor prognosis in human solid tissue cancers, the significance of REV7 expression in hematopoietic malignancies is unclear. This study evaluated the prognostic significance of REV7 expression in patients with diffuse large B-cell lymphoma (DLBCL) treated with rituximab-combined chemotherapy. Using immunohistochemistry, we analyzed 83 specimens of de novo DLBCL [38 germinal center B-cell-like (GCB) and 45 non-GCB DLBCLs] treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone for REV7 expression. Aberrant REV7 expression was detected in DLBCL cell nuclei. High REV7 expression was associated with significantly shorter overall survival (OS) and progression-free survival (PFS) using Kaplan–Meier analysis and log-rank tests (P < 0.01 and P < 0.01, respectively). Multivariate analysis revealed that REV7 expression is an independent prognostic factor for both OS and PFS. Additionally, when patients were divided into four groups using a combination of REV7 expression and international prognostic index (IPI) or Bcl-2 expression, REV7High/IPIPoor and REV7High/Bcl-2High patients showed the poorest outcome. These results indicate that REV7 may be a useful biomarker to predict the prognosis of patients with DLBCL treated with rituximab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Harris NL, Jaffe ES, Stein H, Banks PM, Chan JK, Cleary ML, et al. A revised European-American classification of lymphoid neoplasms: a proposal from the international Lymphoma Study Group. Blood. 1994;84:1361–92.

    CAS  PubMed  Google Scholar 

  2. A predictive model for aggressive non-Hodgkin’s lymphoma. The International Non-Hodgkin’s Lymphoma Prognostic Factors Project. N Engl J Med. 1993;329:987–94.

  3. Goto H, Tsurumi H, Takemura M, Ino-Shimomura Y, Kasahara S, Sawada M, et al. Serum-soluble interleukin-2 receptor (sIL-2R) level determines clinical outcome in patients with aggressive non-Hodgkin’s lymphoma: in combination with the International Prognostic Index. J Cancer Res Clin Oncol. 2005;131:73–9.

    Article  CAS  PubMed  Google Scholar 

  4. Hermine O, Haioun C, Lepage EP, d’Agay MF, Briere J, Lavignac C, et al. Prognostic significance of bcl-2 protein expression in aggressive non-Hodgkin’s lymphoma. Groupe d’Etude des Lymphomes de l’Adulte (GELA). Blood. 1996;87:265–72.

    CAS  PubMed  Google Scholar 

  5. Lossos IS, Jones CD, Warnke R, Natkunam Y, Kaizer H, Zehnder JL, et al. Expression of a single gene, BCL-6, strongly predicts survival in patients with diffuse large B-cell lymphoma. Blood. 2001;98:945–51.

    Article  CAS  PubMed  Google Scholar 

  6. Chang CC, Liu YC, Cleveland RP, Perkins SL. Expression of c-Myc and p53 correlates with clinical outcome in diffuse large B-cell lymphomas. Am J Clin Pathol. 2000;113:512–8.

    Article  CAS  PubMed  Google Scholar 

  7. Leroy K, Haioun C, Lepage E, Le Métayer N, Berger F, Labouyrie E, et al. Groupe d’Etude des Lymphomes de l’Adulte. p53 gene mutations are associated with poor survival in low and low-intermediate risk diffuse large B-cell lymphomas. Ann Oncol. 2002;13:1108–15.

    Article  CAS  PubMed  Google Scholar 

  8. Yamaguchi M, Seto M, Okamoto M, Ichinohasama R, Nakamura N, Yoshino T, et al. De novo CD5 + diffuse large B-cell lymphoma: a clinicopathologic study of 109 patients. Blood. 2002;99:815–21.

    Article  CAS  PubMed  Google Scholar 

  9. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403:503–11.

    Article  CAS  PubMed  Google Scholar 

  10. Rosenwald A, Wright G, ChanWC Connors JM, Campo E, Fisher RI, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med. 2002;346:1937–47.

    Article  PubMed  Google Scholar 

  11. Hans CP, Weisenburger DD, Greiner TC, Gascoyne RD, Delabie J, Ott G, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103:275–82.

    Article  CAS  PubMed  Google Scholar 

  12. Muris JJ, Meijer CJ, Vos W, van Krieken JH, Jiwa NM, Ossenkoppele GJ, et al. Immunohistochemical profiling based on Bcl-2, CD10 and MUM1 expression improves risk stratification in patients with primary nodal diffuse large B cell lymphoma. J Pathol. 2006;208:714–23.

    Article  CAS  PubMed  Google Scholar 

  13. Nyman H, Adde M, Karjalainen-Lindsberg ML, Taskinen M, Berglund M, Amini RM, et al. Prognostic impact of immunohistochemically defined germinal center phenotype in diffuse large B-cell lymphoma patients treated with immunochemotherapy. Blood. 2007;109:4930–5.

    Article  CAS  PubMed  Google Scholar 

  14. Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346:235–42.

    Article  CAS  PubMed  Google Scholar 

  15. Castillo JJ, Beltran BE, Song MK, Ilic I, Leppa S, Nurmi H, et al. The Hans algorithm is not prognostic in patients with diffuse large B-cell lymphoma treated with R-CHOP. Leukemia Res. 2012;36:413–7.

    Article  Google Scholar 

  16. Friedberg EC, McDaniel LD, Schultz RA. The role of endogenous and exogenous DNA damage and mutagenesis. Curr Opin Genet Dev. 2004;14:5–10.

    Article  CAS  PubMed  Google Scholar 

  17. Murakumo Y, Roth T, Ishii H, Rasio D, Numata S, Croce CM, et al. A human REV7 homolog that interacts with the polymerase ζ catalytic subunit hREV3 and the spindle assembly checkpoint protein hMAD2. J Biol Chem. 2000;275:4391–7.

    Article  CAS  PubMed  Google Scholar 

  18. Murakumo Y, Ogura Y, Ishii H, Numata S, Ichihara M, Croce CM, et al. Interactions in the error-prone postreplication repair proteins hREV1, hREV3, and hREV7. J Biol Chem. 2001;276:35644–51.

    Article  CAS  PubMed  Google Scholar 

  19. Prakash S, Johnson RE, Prakash L. Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu Rev Biochem. 2005;74:317–53.

    Article  CAS  PubMed  Google Scholar 

  20. Makarova AV, Burgers PM. Eukaryotic DNA polymerase ζ. DNA Repair. 2015;29:47–55.

    Article  CAS  PubMed  Google Scholar 

  21. Cheung HW, Chun AC, Wang Q, Deng W, Hu L, Guan XY, et al. Inactivation of human MAD2B in nasopharyngeal carcinoma cells leads to chemosensitization to DNA-damaging agents. Cancer Res. 2006;66:4357–67.

    Article  CAS  PubMed  Google Scholar 

  22. Niimi K, Murakumo Y, Watanabe N, Kato T, Mii S, Enomoto A, et al. Suppression of REV7 enhances cisplatin sensitivity in ovarian clear cell carcinoma cells. Cancer Sci. 2014;105:545–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Yuan B, Xu Y, Woo JH, Wang Y, Bae YK, Yoon DS, et al. Increased expression of mitotic checkpoint genes in breast cancer cells with chromosomal instability. Clin Cancer Res. 2006;12:405–10.

    Article  CAS  PubMed  Google Scholar 

  24. Rimkus C, Friederichs J, Rosenberg R, Holzmann B, Siewert JR, Janssen KP. Expression of the mitotic checkpoint gene MAD2L2 has prognostic significance in colon cancer. Int J Cancer. 2007;120:207–11.

    Article  CAS  PubMed  Google Scholar 

  25. Zhao J, Liu S, Wang H, Zhang X, Kang T, Li Z, et al. Mitotic arrest deficient protein MAD2B is overexpressed in human glioma, with depletion enhancing sensitivity to ionizing radiation. J Clin Neurosci. 2011;18:827–33.

    Article  CAS  PubMed  Google Scholar 

  26. Carbone PP, Kaplan HS, Musshoff K, Smithers DW, Tubiana M. Report of the committee on Hodgkin’s disease staging classification. Canser Res. 1971;31:1860–1.

    CAS  Google Scholar 

  27. Watanabe N, Mii S, Asai N, Asai M, Niimi K, Ushida K, et al. The REV7 subunit of DNA polymerase ζ is essential for primordial germ cell maintenance in the mouse. J Biol Chem. 2013;288:10459–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Sakai A, Yoshida N. The role of tumor associated macrophages on serum soluble IL-2R levels in B-cell lymphomas. J Clin Exp Hematop. 2014;54:49–57.

    Article  PubMed  Google Scholar 

  29. Murakumo Y. The property of DNA polymerase ζ: REV7 is a putative protein involved in translesion DNA synthesis and cell cycle control. Mutat Res. 2002;510:37–44.

    Article  CAS  PubMed  Google Scholar 

  30. Chen J, Fang G. MAD2B is an inhibitor of the anaphase-promoting complex. Genes Dev. 2001;15:1765–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Pfleger CM, Salic A, Lee E, Kirschner MW. Inhibition of Cdh1-APC by the MAD2-related protein MAD2L2: a novel mechanism for regulating Cdh1. Genes Dev. 2001;15:1759–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Zhang L, Yang SH, Sharrocks AD. Rev7/MAD2B links c-Jun N-terminal protein kinase pathway signaling to activation of the transcription factor Elk-1. Mol Cell Biol. 2007;27:2861–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Hong CF, Chou YT, Lin YS, Wu CW. MAD2B, a novel TCF4-binding protein, modulates TCF4-mediated epithelial-mesenchymal transdifferentiation. J Biol Chem. 2009;284:19613–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Li L, Shi Y, Wu H, Wan B, Li P, Zhou L, et al. Hepatocellular carcinoma-associated gene 2 interacts with MAD2L2. Mol Cell Biochem. 2007;304:297–304.

    Article  CAS  PubMed  Google Scholar 

  35. Weterman MA, van Groningen JJ, Tertoolen L, van Kessel AG. Impairment of MAD2B-PRCC interaction in mitotic checkpoint defective t(X;1)-positive renal cell carcinomas. Proc Natl Acad Sci USA. 2001;98:13808–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Read JA, Koff JL, Nastoupil LJ, Williams JN, Cohen JB, Flowers CR. Evaluating cell-of origin subtype methods for predicting diffuse large B-cell lymphoma survival: a meta-analysis of gene expression profiling and immunohistochemistry algorithms. Clin Lymphoma Myeloma Leuk. 2014;14:460–7.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Choi WW, Weisenburger DD, Greiner TC, Piris MA, Banham AH, Delabie J, et al. A new immunostain algorithm classifies diffuse large B-cell lymphoma into molecular subtypes with high accuracy. Clin Cancer Res. 2009;15:5494–502.

    Article  CAS  PubMed  Google Scholar 

  38. Ziepert M, Hasenclever D, Kuhnt E, Glass B, Schmitz N, Pfreundschuh M, et al. Standard International prognostic index remains a valid predictor of outcome for patients with aggressive CD20 + B-cell lymphoma in the rituximab era. J Clin Oncol. 2010;28:2373–80.

    Article  CAS  PubMed  Google Scholar 

  39. Mounier N, Briere J, Gisselbrecht C, Emile JF, Lederlin P, Sebban C, et al. Rituximab plus CHOP (R-CHOP) overcomes bcl-2–associated resistance to chemotherapy in elderly patients with diffuse large B-cell lymphoma (DLBCL). Blood. 2003;101:4279–84.

    Article  CAS  PubMed  Google Scholar 

  40. Goto N, Tsurumi H, Goto H, Shimomura YI, Kasahara S, Hara T, et al. Serum soluble interleukin-2 receptor (sIL-2R) level is associated with the outcome of patients with diffuse large B cell lymphoma treated with R-CHOP regimens. Ann Hematol. 2012;91:705–14.

    Article  CAS  PubMed  Google Scholar 

  41. Jain P, Fayad LE, Rosenwald A, Young KH, O’Brien S. Recent advances in de novo CD5+ diffuse large B cell lymphoma. Am J Hematol. 2013;88:798–802.

    Article  PubMed  Google Scholar 

  42. Savage KJ, Johnson NA, Ben-Neriah S, Connors JM, Sehn LH, Farinha P, et al. MYC gene rearrangements are associated with a poor prognosis in diffuse large B-cell lymphoma patients treated with R-CHOP chemotherapy. Blood. 2009;114:3533–7.

    Article  CAS  PubMed  Google Scholar 

  43. Xu-Monette ZY, Wu L, Visco C, Tai YC, Tzankov A, Liu WM, et al. Mutational profile and prognostic significance of TP53 in diffuse large B-cell lymphoma patients treated with R-CHOP: report from an International DLBCL Rituximab-CHOP Consortium Program Study. Blood. 2012;120:3986–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Hu S, Xu-Monette ZY, Tzankov A, Green T, Wu L, Balasubramanyam A, et al. MYC/BCL2 protein coexpression contributes to the inferior survival of activated B-cell subtype of diffuse large B-cell lymphoma and demonstrates high-risk gene expression signatures: a report from The International DLBCL Rituximab-CHOP Consortium Program. Blood. 2013;121:4021–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Green TM, Young KH, Visco C, Xu-Monette ZY, Orazi A, Go RS, et al. Immunohistochemical double-hit score is a strong predictor of outcome in patients with diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol. 2012;30:3460–7.

    Article  CAS  PubMed  Google Scholar 

  46. Vazquez A, Bond EE, Levine AJ, Bond GL. The genetics of the p53 pathway, apoptosis and cancer therapy. Nat Rev Drug Discov. 2008;7:979–87.

    Article  CAS  PubMed  Google Scholar 

  47. Xu G, Chapman JR, Brandsma I, Yuan J, Mistrik M, Bouwman P, et al. REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Nature. 2015;521:541–4.

    Article  CAS  PubMed  Google Scholar 

  48. Boersma V, Moatti N, Segura-Bayona S, Peuscher MH, van der Torre J, Wevers BA, et al. MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5′ end resection. Nature. 2015;521:537–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Ren YR, Jin YD, Zhang ZH, Li L, Wu P. Rituximab treatment strategy for patients with diffuse large B-cell lymphoma after first-line therapy: a systematic review and meta-analysis. Chin Med J (Engl). 2015;128:378–83.

    Article  PubMed  Google Scholar 

  50. Sehn LH, Gascoyne RD. Diffuse large B-cell lymphoma: optimizing outcome in the context of clinical and biologic heterogeneity. Blood. 2015;125:22–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research (C) commissioned by the Ministry of Education, Culture, Sports, Science and Technology of Japan (to YM, 24590479).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiki Murakumo.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Electronic supplementary material

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okina, S., Yanagisawa, N., Yokoyama, M. et al. High expression of REV7 is an independent prognostic indicator in patients with diffuse large B-cell lymphoma treated with rituximab. Int J Hematol 102, 662–669 (2015). https://doi.org/10.1007/s12185-015-1880-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-015-1880-3

Keywords

Navigation