Skip to main content

Advertisement

Log in

New functions of the fibrinolytic system in bone marrow cell-derived angiogenesis

  • Progress in Hematology
  • Vascular biology with relation to hematopoiesis
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Angiogenesis is a process by which new blood vessels form from preexisting vasculature. This process includes differentiation of angioblasts into endothelial cells with the help of secreted angiogenic factors released from cells such as bone marrow (BM)-derived cells. The fibrinolytic factor plasmin, which is a serine protease, has been shown to promote endothelial cell migration either directly, by degrading matrix proteins such as fibrin, or indirectly, by converting matrix-bound angiogenic growth factors into a soluble form. Plasmin can also activate other pericellular proteases such as matrix metalloproteinases (MMPs). Recent studies indicate that plasmin can additionally alter cellular adhesion and migration. We showed that factors of the fibrinolytic pathway can recruit BM-derived hematopoietic cells into ischemic/hypoxic tissues by altering the activation status of MMPs. These BM-derived cells can function as accessory cells that promote angiogenesis by releasing angiogenic signals. This review will discuss recent data regarding the role of the fibrinolytic system in controlling myeloid cell-driven angiogenesis. We propose that plasmin/plasminogen may be a potential target not only for development of effective angiogenic therapeutic strategies for the treatment of cancer, but also for development of strategies to promote ischemic tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hulboy DL, Rudolph LA, Matrisian LM. Matrix metalloproteinases as mediators of reproductive function. Mol Hum Reprod. 1997;3:27–45.

    Article  PubMed  CAS  Google Scholar 

  2. Vu TH, Werb Z. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev. 2000;14:2123–33.

    Article  PubMed  CAS  Google Scholar 

  3. Le NT, Xue M, Castelnoble LA, Jackson CJ. The dual personalities of matrix metalloproteinases in inflammation. Front Biosci. 2007;12:1475–87.

    Article  PubMed  CAS  Google Scholar 

  4. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Natl Rev Mol Cell Biol. 2007;8:221–33.

    Article  CAS  Google Scholar 

  5. Roy R, Zhang B, Moses MA. Making the cut: protease-mediated regulation of angiogenesis. Exp Cell Res. 2006;312:608–22.

    Article  PubMed  CAS  Google Scholar 

  6. Dejonckheere E, Vandenbroucke RE, Libert C. Matrix metalloproteinases as drug targets in ischemia/reperfusion injury. Drug Discov Today. 2011;16:762–78.

    PubMed  CAS  Google Scholar 

  7. Cauwe B, Van den Steen PE, Opdenakker G. The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. Crit Rev Biochem Mol Biol. 2007;42:113–85.

    Article  PubMed  CAS  Google Scholar 

  8. Kinnaird T, Stabile E, Burnett MS, Epstein SE. Bone-marrow-derived cells for enhancing collateral development: mechanisms, animal data, and initial clinical experiences. Circ Res. 2004;95:354–63.

    Article  PubMed  CAS  Google Scholar 

  9. Laurent J, Touvrey C, Botta F, Kuonen F, Ruegg C. Emerging paradigms and questions on pro-angiogenic bone marrow-derived myelomonocytic cells. Int J Dev Biol. 2011;55:527–34.

    Article  PubMed  CAS  Google Scholar 

  10. Coffelt SB, Lewis CE, Naldini L, Brown JM, Ferrara N, et al. Elusive identities and overlapping phenotypes of proangiogenic myeloid cells in tumors. Am J Pathol. 2010;176:1564–76.

    Article  PubMed  Google Scholar 

  11. Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer. 2008;8:618–31.

    Article  PubMed  CAS  Google Scholar 

  12. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141:52–67.

    Article  PubMed  CAS  Google Scholar 

  13. Collen D. Ham-Wasserman lecture: role of the plasminogen system in fibrin-homeostasis and tissue remodeling. Hematology Am Soc Hematol Educ Program 2001:1–9.

  14. Pepper MS. Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol. 2001;21:1104–17.

    Article  PubMed  CAS  Google Scholar 

  15. Van den Steen PE, Opdenakker G, Wormald MR, Dwek RA, Rudd PM. Matrix remodelling enzymes, the protease cascade and glycosylation. Biochim Biophys Acta. 2001;1528:61–73.

    Article  PubMed  Google Scholar 

  16. Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol. 2001;17:463–516.

    Article  PubMed  CAS  Google Scholar 

  17. Ra HJ, Parks WC. Control of matrix metalloproteinase catalytic activity. Matrix Biol. 2007;26:587–96.

    Article  PubMed  CAS  Google Scholar 

  18. Dreier R, Grassel S, Fuchs S, Schaumburger J, Bruckner P. Pro-MMP-9 is a specific macrophage product and is activated by osteoarthritic chondrocytes via MMP-3 or a MT1-MMP/MMP-13 cascade. Exp Cell Res. 2004;297:303–12.

    Article  PubMed  CAS  Google Scholar 

  19. Brew K, Nagase H. The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta. 2010;1803:55–71.

    Article  PubMed  CAS  Google Scholar 

  20. Lijnen HR, Ugwu F, Bini A, Collen D. Generation of an angiostatin-like fragment from plasminogen by stromelysin-1 (MMP-3). Biochemistry. 1998;37:4699–702.

    Article  PubMed  CAS  Google Scholar 

  21. Patterson BC, Sang QA. Angiostatin-converting enzyme activities of human matrilysin (MMP-7) and gelatinase B/type IV collagenase (MMP-9). J Biol Chem. 1997;272:28823–5.

    Article  PubMed  CAS  Google Scholar 

  22. Dong Z, Kumar R, Yang X, Fidler IJ. Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell. 1997;88:801–10.

    Article  PubMed  CAS  Google Scholar 

  23. Lijnen HR, Van Hoef B, Collen D. Inactivation of the serpin alpha(2)-antiplasmin by stromelysin-1. Biochim Biophys Acta. 2001;1547:206–13.

    Article  PubMed  CAS  Google Scholar 

  24. Castellino FJ, Ploplis VA. Structure and function of the plasminogen/plasmin system. Thromb Haemost. 2005;93:647–54.

    PubMed  CAS  Google Scholar 

  25. Ogawa M, Kawamoto M, Yamanaka N. Matrix metalloproteinase and tissue inhibitor of metalloproteinase in human bone marrow tissues-an immunohistochemical study. J Nihon Med Sch. 2000;67:235–41.

    Article  PubMed  CAS  Google Scholar 

  26. Heissig B, Rafii S, Akiyama H, Ohki Y, Sato Y, et al. Low-dose irradiation promotes tissue revascularization through VEGF release from mast cells and MMP-9-mediated progenitor cell mobilization. J Exp Med. 2005;202:739–50.

    Article  PubMed  CAS  Google Scholar 

  27. Heissig B, Ohki M, Ishihara M, Tashiro Y, Nishida C, et al. Contribution of the fibrinolytic pathway to hematopoietic regeneration. J Cell Physiol. 2009;221:521–5.

    Article  PubMed  CAS  Google Scholar 

  28. Pruijt JF, Fibbe WE, Laterveer L, Pieters RA, Lindley IJ, et al. Prevention of interleukin-8-induced mobilization of hematopoietic progenitor cells in rhesus monkeys by inhibitory antibodies against the metalloproteinase gelatinase B (MMP-9). Proc Natl Acad Sci USA. 1999;96:10863–8.

    Article  PubMed  CAS  Google Scholar 

  29. Lapidot T, Kollet O. The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2m(null) mice. Leukemia. 2002;16:1992–2003.

    Article  PubMed  CAS  Google Scholar 

  30. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell. 2002;109:625–37.

    Article  PubMed  CAS  Google Scholar 

  31. Vagima Y, Avigdor A, Goichberg P, Shivtiel S, Tesio M, et al. MT1-MMP and RECK are involved in human CD34+ progenitor cell retention, egress, and mobilization. J Clin Invest. 2009;119:492–503.

    Article  PubMed  CAS  Google Scholar 

  32. Heissig B, Lund LR, Akiyama H, Ohki M, Morita Y, et al. The plasminogen fibrinolytic pathway is required for hematopoietic regeneration. Cell Stem Cell. 2007;1:658–70.

    Article  PubMed  CAS  Google Scholar 

  33. Heissig B, Lund LR, Akiyama H, Ohki M, Morita Y, et al. The plasminogen fibrinolytic pathway is required for hematopoietic regeneration. Cell Stem Cell. 2008;3:120.

    Article  CAS  Google Scholar 

  34. McQuibban GA, Butler GS, Gong JH, Bendall L, Power C, et al. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem. 2001;276:43503–8.

    Article  PubMed  CAS  Google Scholar 

  35. Gong Y, Fan Y, Hoover-Plow J. Plasminogen regulates stromal cell-derived factor-1/CXCR4-mediated hematopoietic stem cell mobilization by activation of matrix metalloproteinase-9. Arterioscler Thromb Vasc Biol. 2011;31:2035–43.

    Article  PubMed  CAS  Google Scholar 

  36. Tjwa M, Moura R, Moons L, Plaisance S, De Mol M, et al. Fibrinolysis-independent role of plasmin and its activators in the hematopoietic recovery after myeloablation. J Cell Mol Med. 2008;13:4587–95.

    Article  PubMed  Google Scholar 

  37. Fietz T, Hattori K, Thiel E, Heissig B. Increased soluble urokinase plasminogen activator receptor (suPAR) serum levels after granulocyte colony-stimulating factor treatment do not predict successful progenitor cell mobilization in vivo. Blood. 2006;107:3408–9.

    Article  PubMed  CAS  Google Scholar 

  38. Okaji Y, Tashiro Y, Gritli I, Nishida C, Sato A, et al. Plasminogen deficiency attenuates postnatal erythropoiesis in male C57BL/6 mice through decreased activity of the LH-testosterone axis. Exp Hematol. 2011;40:143–54.

    Article  PubMed  Google Scholar 

  39. van Hinsbergh VW, Koolwijk P. Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc Res. 2008;78:203–12.

    Article  PubMed  Google Scholar 

  40. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92:827–39.

    Article  PubMed  CAS  Google Scholar 

  41. Heissig B, Hattori K, Friedrich M, Rafii S, Werb Z. Angiogenesis: vascular remodeling of the extracellular matrix involves metalloproteinases. Curr Opin Hematol. 2003;10:136–41.

    Article  PubMed  CAS  Google Scholar 

  42. Deryugina EI, Quigley JP. Pleiotropic roles of matrix metalloproteinases in tumor angiogenesis: contrasting, overlapping and compensatory functions. Biochim Biophys Acta. 2010;1803:103–20.

    Article  PubMed  CAS  Google Scholar 

  43. Hajjar K, Deora A. New concepts in fibrinolysis and angiogenesis. Curr Atheroscler Rep. 2000;2:417–21.

    Article  PubMed  CAS  Google Scholar 

  44. Veklich Y, Francis CW, White J, Weisel JW. Structural studies of fibrinolysis by electron microscopy. Blood. 1998;92:4721–9.

    PubMed  CAS  Google Scholar 

  45. Pepper MS, Sappino AP, Stocklin R, Montesano R, Orci L, et al. Upregulation of urokinase receptor expression on migrating endothelial cells. J Cell Biol. 1993;122:673–84.

    Article  PubMed  CAS  Google Scholar 

  46. Mazar AP, Henkin J, Goldfarb RH. The urokinase plasminogen activator system in cancer: implications for tumor angiogenesis and metastasis. Angiogenesis. 1999;3:15–32.

    Article  PubMed  CAS  Google Scholar 

  47. Yebra M, Parry GC, Stromblad S, Mackman N, Rosenberg S, et al. Requirement of receptor-bound urokinase-type plasminogen activator for integrin alphavbeta5-directed cell migration. J Biol Chem. 1996;271:29393–9.

    Article  PubMed  CAS  Google Scholar 

  48. Mignatti P, Rifkin DB. Biology and biochemistry of proteinases in tumor invasion. Physiol Rev. 1993;73:161–95.

    PubMed  CAS  Google Scholar 

  49. Murphy G, Stanton H, Cowell S, Butler G, Knauper V, et al. Mechanisms for pro matrix metalloproteinase activation. Apmis. 1999;107:38–44.

    Article  PubMed  CAS  Google Scholar 

  50. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307.

    Article  PubMed  CAS  Google Scholar 

  51. Heissig B, Nishida C, Tashiro Y, Sato Y, Ishihara M, et al. Role of neutrophil-derived matrix metalloproteinase-9 in tissue regeneration. Histol Histopathol. 2010;25:765–70.

    PubMed  CAS  Google Scholar 

  52. Iruela-Arispe ML, Davis GE. Cellular and molecular mechanisms of vascular lumen formation. Dev Cell. 2009;16:222–31.

    Article  PubMed  CAS  Google Scholar 

  53. Levi E, Fridman R, Miao HQ, Ma YS, Yayon A, et al. Matrix metalloproteinase 2 releases active soluble ectodomain of fibroblast growth factor receptor 1. Proc Natl Acad Sci USA. 1996;93:7069–74.

    Article  PubMed  CAS  Google Scholar 

  54. Hattori K, Heissig B, Wu Y, Dias S, Tejada R, et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat Med. 2002;8:841–9.

    PubMed  CAS  Google Scholar 

  55. Lyden D, Hattori K, Dias S, Costa C, Blaikie P, et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med. 2001;7:1194–201.

    Article  PubMed  CAS  Google Scholar 

  56. Fischer C, Jonckx B, Mazzone M, Zacchigna S, Loges S, et al. Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell. 2007;131:463–75.

    Article  PubMed  CAS  Google Scholar 

  57. Bais C, Wu X, Yao J, Yang S, Crawford Y, et al. PlGF blockade does not inhibit angiogenesis during primary tumor growth. Cell. 2010;141:166–77.

    Article  PubMed  CAS  Google Scholar 

  58. Van de Veire S, Stalmans I, Heindryckx F, Oura H, Tijeras-Raballand A, et al. Further pharmacological and genetic evidence for the efficacy of PlGF inhibition in cancer and eye disease. Cell. 2010;141:178–90.

    Article  PubMed  Google Scholar 

  59. Hattori K, Dias S, Heissig B, Hackett NR, Lyden D, et al. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med. 2001;193:1005–14.

    Article  PubMed  CAS  Google Scholar 

  60. Jin DK, Shido K, Kopp HG, Petit I, Shmelkov SV, et al. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med. 2006;12:557–67.

    Article  PubMed  CAS  Google Scholar 

  61. Ohki Y, Heissig B, Sato Y, Akiyama H, Zhu Z, et al. Granulocyte colony-stimulating factor promotes neovascularization by releasing vascular endothelial growth factor from neutrophils. Faseb J. 2005;13:13.

    Google Scholar 

  62. Shojaei F, Wu X, Zhong C, Yu L, Liang XH, et al. Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature. 2007;450:825–31.

    Article  PubMed  CAS  Google Scholar 

  63. Crivellato E, Nico B, Ribatti D. Mast cells and tumour angiogenesis: new insight from experimental carcinogenesis. Cancer Lett. 2008;269:1–6.

    Article  PubMed  CAS  Google Scholar 

  64. Ahn GO, Brown JM. Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: role of bone marrow-derived myelomonocytic cells. Cancer Cell. 2008;13:193–205.

    Article  PubMed  CAS  Google Scholar 

  65. Du R, Lu KV, Petritsch C, Liu P, Ganss R, et al. HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell. 2008;13:206–20.

    Article  PubMed  CAS  Google Scholar 

  66. Ohki M, Ohki Y, Ishihara M, Nishida C, Tashiro Y, et al. Tissue type plasminogen activator regulates myeloid-cell dependent neoangiogenesis during tissue regeneration. Blood. 2010;115:4302–12.

    Article  PubMed  CAS  Google Scholar 

  67. Bugge TH, Kombrinck KW, Xiao Q, Holmback K, Daugherty CC, et al. Growth and dissemination of lewis lung carcinoma in plasminogen-deficient mice. Blood. 1997;90:4522–31.

    PubMed  CAS  Google Scholar 

  68. Shapiro RL, Duquette JG, Roses DF, Nunes I, Harris MN, et al. Induction of primary cutaneous melanocytic neoplasms in urokinase-type plasminogen activator (uPA)-deficient and wild-type mice: cellular blue nevi invade but do not progress to malignant melanoma in uPA-deficient animals. Cancer Res. 1996;56:3597–604.

    PubMed  CAS  Google Scholar 

  69. Sabapathy KT, Pepper MS, Kiefer F, Mohle-Steinlein U, Tacchini-Cottier F, et al. Polyoma middle T-induced vascular tumor formation: the role of the plasminogen activator/plasmin system. J Cell Biol. 1997;137:953–63.

    Article  PubMed  CAS  Google Scholar 

  70. Bajou K, Noel A, Gerard RD, Masson V, Brunner N, et al. Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nat Med. 1998;4:923–8.

    Article  PubMed  CAS  Google Scholar 

  71. Ishihara M, Nishida C, Tashiro Y, Gritli I, Rosenkvist J, et al. Plasmin inhibitor reduces T-cell lymphoid tumor growth by suppressing matrix metalloproteinase-9-dependent CD11b(+)/F4/80(+) myeloid cell recruitment. Leukemia 2011 (in press).

Download references

Acknowledgments

This work was supported by the following: grants from the Japan Society for the Promotion of Science and Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) (K.H.; B.H.); a Grant-in-Aid for Scientific Research on Priority Areas from MEXT (K.H.); Mitsubishi Pharma Research Foundation (K.H); a Grant-in-Aid for Scientific Research on Innovative Areas from MEXT (B.H.); the Program for Improvement of the Research Environment for Young Researchers (B.H.) funded by the Special Coordination Funds for Promoting Science and Technology of MEXT, Japan. The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beate Heissig.

About this article

Cite this article

Heissig, B., Ohki-Koizumi, M., Tashiro, Y. et al. New functions of the fibrinolytic system in bone marrow cell-derived angiogenesis. Int J Hematol 95, 131–137 (2012). https://doi.org/10.1007/s12185-012-1016-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-012-1016-y

Keywords

Navigation