Skip to main content

Advertisement

Log in

Molecular nature of radiation injury and DNA repair disorders associated with radiosensitivity

  • Progress in Hematology
  • Radiation injury to human body—acute and late hematopoietic organ damage
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Ionizing radiation (IR), as well as a wide variety of chemicals and reactive oxygen species, can cause insults in DNA integrity. However, IR is distinct from other agents in that produces clustered DNA damage, particularly double-strand DNA breaks (DSBs). The discovery of radiosensitive human diseases has revealed that the molecular mechanisms underlying the biological effects of IR impact cellular responses to and repair of DSBs. One class of diseases, including ataxia-telangiectasia, displays a defect in checkpoint response to DSBs. Another class of diseases exhibits severe combined immunodeficiency and defects in DSB repair. Importantly, radiosensitive human diseases are also associated with increased risks of leukemia/lymphoma. In this review, we summarize the molecular nature of IR-induced DNA damage, and provide an overview of the molecular mechanisms of checkpoint response to and repair of DSBs. Lastly, we discuss the roles of these mechanisms in the development of the immune system and the suppression of lymphoma/leukemia, based on the clinical features and experiments with model mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gotoff SP, Amirmokri E, Liebner EJ. Ataxia telangiectasia. Neoplasia, untoward response to x-irradiation, and tuberous sclerosis. Am J Dis Child. 1967;114:617–25.

    PubMed  CAS  Google Scholar 

  2. Shapiro R. Damage to DNA caused by hydrolysis. In: Seeberg E, Kleppe K, editors. Chromosome damage and repair. New York: Plenum Publishing Corp.; 1981.

  3. Greer S, Zamenhof S. Studies on depurination of DNA by heat. J Mol Biol. 1962;4:123–41.

    Article  PubMed  CAS  Google Scholar 

  4. Breen AP, Murphy JA. Reactions of oxyl radicals with DNA. Free Radic Biol Med. 1995;18:1033–77.

    Article  PubMed  CAS  Google Scholar 

  5. Dizdaroglu M. Oxidative damage to DNA in mammalian chromatin. Mutat Res. 1992;275:331–42.

    PubMed  CAS  Google Scholar 

  6. Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993;362:709–15.

    Article  PubMed  CAS  Google Scholar 

  7. Singer B, Kusmierek JT. Chemical mutagenesis. Annu Rev Biochem. 1982;51:655–93.

    Article  PubMed  CAS  Google Scholar 

  8. Cosman M, de los Santos C, Fiala R, Hingerty BE, Singh SB, Ibanez V, Margulis LA, Live D, Geacintov NE, Broyde S, et al. Solution conformation of the major adduct between the carcinogen (+)-anti-benzo[a]pyrene diol epoxide and DNA. Proc Natl Acad Sci USA. 1992;89:1914–8.

    Article  PubMed  CAS  Google Scholar 

  9. Vilenchik MM, Knudson AG Jr. Inverse radiation dose–rate effects on somatic and germ-line mutations and DNA damage rates. Proc Natl Acad Sci USA. 2000;97:5381–6.

    Article  PubMed  CAS  Google Scholar 

  10. Ward JF. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol. 1988;35:95–125.

    Article  PubMed  CAS  Google Scholar 

  11. Caldecott KW. Single-strand break repair and genetic disease. Nat Rev Genet. 2008;9:619–31.

    PubMed  CAS  Google Scholar 

  12. Morgan JL, Holcomb TM, Morrissey RW. Radiation reaction in ataxia telangiectasia. Am J Dis Child. 1968;116:557–8.

    PubMed  CAS  Google Scholar 

  13. Taylor AM, Harnden DG, Arlett CF, Harcourt SA, Lehmann AR, Stevens S, Bridges BA. Ataxia telangiectasia: a human mutation with abnormal radiation sensitivity. Nature. 1975;258:427–9.

    Article  PubMed  CAS  Google Scholar 

  14. Taalman RD, Jaspers NG, Scheres JM, de Wit J, Hustinx TW. Hypersensitivity to ionizing radiation, in vitro, in a new chromosomal breakage disorder, the Nijmegen breakage syndrome. Mutat Res. 1983;112:23–32.

    PubMed  CAS  Google Scholar 

  15. Fiorilli M, Antonelli A, Russo G, Crescenzi M, Carbonari M, Petrinelli P. Variant of ataxia-telangiectasia with low-level radiosensitivity. Hum Genet. 1985;70:274–7.

    Article  PubMed  CAS  Google Scholar 

  16. Barbi G, Scheres JM, Schindler D, Taalman RD, Rodens K, Mehnert K, Muller M, Seyschab H. Chromosome instability and X-ray hypersensitivity in a microcephalic and growth-retarded child. Am J Med Genet. 1991;40:44–50.

    Article  PubMed  CAS  Google Scholar 

  17. Hernandez D, McConville CM, Stacey M, Woods CG, Brown MM, Shutt P, Rysiecki G, Taylor AM. A family showing no evidence of linkage between the ataxia telangiectasia gene and chromosome 11q22-23. J Med Genet. 1993;30:135–40.

    Article  PubMed  CAS  Google Scholar 

  18. Waltes R, Kalb R, Gatei M, Kijas AW, Stumm M, Sobeck A, Wieland B, Varon R, Lerenthal Y, Lavin MF, Schindler D, Dork T. Human RAD50 deficiency in a Nijmegen breakage syndrome-like disorder. Am J Hum Genet. 2009;84:605–16.

    Article  PubMed  CAS  Google Scholar 

  19. Carney JP, Maser RS, Olivares H, Davis EM, Le Beau M, Yates JR 3rd, Hays L, Morgan WF, Petrini JH. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell. 1998;93:477–86.

    Article  PubMed  CAS  Google Scholar 

  20. Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, Tagle DA, Smith S, Uziel T, Sfez S, Ashkenazi M, Pecker I, Frydman M, Harnik R, Patanjali SR, Simmons A, Clines GA, Sartiel A, Gatti RA, Chessa L, Sanal O, Lavin MF, Jaspers NG, Taylor AM, Arlett CF, Miki T, Weissman SM, Lovett M, Collins FS, Shiloh Y. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science. 1995;268:1749–53.

    Article  PubMed  CAS  Google Scholar 

  21. Matsuura S, Tauchi H, Nakamura A, Kondo N, Sakamoto S, Endo S, Smeets D, Solder B, Belohradsky BH, Der Kaloustian VM, Oshimura M, Isomura M, Nakamura Y, Komatsu K. Positional cloning of the gene for Nijmegen breakage syndrome. Nat Genet. 1998;19:179–81.

    Article  PubMed  CAS  Google Scholar 

  22. Stewart GS, Maser RS, Stankovic T, Bressan DA, Kaplan MI, Jaspers NG, Raams A, Byrd PJ, Petrini JH, Taylor AM. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell. 1999;99:577–87.

    Article  PubMed  CAS  Google Scholar 

  23. van der Burg M, Ijspeert H, Verkaik NS, Turul T, Wiegant WW, Morotomi-Yano K, Mari PO, Tezcan I, Chen DJ, Zdzienicka MZ, van Dongen JJ, van Gent DC. A DNA-PKcs mutation in a radiosensitive T-B-SCID patient inhibits Artemis activation and nonhomologous end-joining. J Clin Invest. 2009;119:91–8.

    PubMed  Google Scholar 

  24. Moshous D, Callebaut I, de Chasseval R, Corneo B, Cavazzana-Calvo M, Le Deist F, Tezcan I, Sanal O, Bertrand Y, Philippe N, Fischer A, de Villartay JP. Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell. 2001;105:177–86.

    Article  PubMed  CAS  Google Scholar 

  25. Li L, Moshous D, Zhou Y, Wang J, Xie G, Salido E, Hu D, de Villartay JP, Cowan MJ. A founder mutation in Artemis, an SNM1-like protein, causes SCID in Athabascan-speaking Native Americans. J Immunol. 2002;168:6323–9.

    PubMed  CAS  Google Scholar 

  26. Riballo E, Critchlow SE, Teo SH, Doherty AJ, Priestley A, Broughton B, Kysela B, Beamish H, Plowman N, Arlett CF, Lehmann AR, Jackson SP, Jeggo PA. Identification of a defect in DNA ligase IV in a radiosensitive leukaemia patient. Curr Biol. 1999;9:699–702.

    Article  PubMed  CAS  Google Scholar 

  27. Lavin MF, Schroeder AL. Damage-resistant DNA synthesis in eukaryotes. Mutat Res. 1988;193:193–206.

    PubMed  CAS  Google Scholar 

  28. Jaspers NG, Zdzienicka MZ. Inhibition of DNA synthesis by ionizing radiation: a marker for an S-phase checkpoint. Methods Mol Biol. 2006;314:51–9.

    Article  PubMed  CAS  Google Scholar 

  29. Taalman RD, Hustinx TW, Weemaes CM, Seemanova E, Schmidt A, Passarge E, Scheres JM. Further delineation of the Nijmegen breakage syndrome. Am J Med Genet. 1989;32:425–31.

    Article  PubMed  CAS  Google Scholar 

  30. Jaspers NG, Gatti RA, Baan C, Linssen PC, Bootsma D. Genetic complementation analysis of ataxia telangiectasia and Nijmegen breakage syndrome: a survey of 50 patients. Cytogenet Cell Genet. 1988;49:259–63.

    Article  PubMed  CAS  Google Scholar 

  31. Chrzanowska KH, Kleijer WJ, Krajewska-Walasek M, Bialecka M, Gutkowska A, Goryluk-Kozakiewicz B, Michalkiewicz J, Stachowski J, Gregorek H, Lyson-Wojciechowska G, et al. Eleven Polish patients with microcephaly, immunodeficiency, and chromosomal instability: the Nijmegen breakage syndrome. Am J Med Genet. 1995;57:462–71.

    Article  PubMed  CAS  Google Scholar 

  32. Kraakman-van der Zwet M, Overkamp WJ, Friedl AA, Klein B, Verhaegh GW, Jaspers NG, Midro AT, Eckardt-Schupp F, Lohman PH, Zdzienicka MZ. Immortalization and characterization of Nijmegen breakage syndrome fibroblasts. Mutat Res. 1999;434:17–27.

    PubMed  CAS  Google Scholar 

  33. Jeggo PA, Carr AM, Lehmann AR. Splitting the ATM: distinct repair and checkpoint defects in ataxia-telangiectasia. Trends Genet. 1998;14:312–6.

    Article  PubMed  CAS  Google Scholar 

  34. O’Driscoll M, Cerosaletti KM, Girard PM, Dai Y, Stumm M, Kysela B, Hirsch B, Gennery A, Palmer SE, Seidel J, Gatti RA, Varon R, Oettinger MA, Neitzel H, Jeggo PA, Concannon P. DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency. Mol Cell. 2001;8:1175–85.

    Article  PubMed  Google Scholar 

  35. Falck J, Coates J, Jackson SP. Conserved modes of recruitment of ATM ATR and DNA-PKcs to sites of DNA damage. Nature. 2005;434:605–11.

    Article  PubMed  CAS  Google Scholar 

  36. Williams RS, Williams JS, Tainer JA. Mre11-Rad50-Nbs1 is a keystone complex connecting DNA repair machinery, double-strand break signaling, and the chromatin template. Biochem Cell Biol. 2007;85:509–20.

    Article  PubMed  CAS  Google Scholar 

  37. Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316:1160–6.

    Article  PubMed  CAS  Google Scholar 

  38. Stewart GS, Wang B, Bignell CR, Taylor AM, Elledge SJ. MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature. 2003;421:961–6.

    Article  PubMed  CAS  Google Scholar 

  39. Lou Z, Minter-Dykhouse K, Wu X, Chen J. MDC1 is coupled to activated CHK2 in mammalian DNA damage response pathways. Nature. 2003;421:957–61.

    Article  PubMed  CAS  Google Scholar 

  40. Costanzo V, Robertson K, Bibikova M, Kim E, Grieco D, Gottesman M, Carroll D, Gautier J. Mre11 protein complex prevents double-strand break accumulation during chromosomal DNA replication. Mol Cell. 2001;8:137–47.

    Article  PubMed  CAS  Google Scholar 

  41. Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem. 2001;276:42462–7.

    Article  PubMed  CAS  Google Scholar 

  42. Goldberg M, Stucki M, Falck J, D’Amours D, Rahman D, Pappin D, Bartek J, Jackson SP. MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature. 2003;421:952–6.

    Article  PubMed  CAS  Google Scholar 

  43. Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, Appella E, Kastan MB, Siliciano JD. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science. 1998;281:1677–9.

    Article  PubMed  CAS  Google Scholar 

  44. Kang J, Ferguson D, Song H, Bassing C, Eckersdorff M, Alt FW, Xu Y. Functional interaction of H2AX, NBS1, and p53 in ATM-dependent DNA damage responses and tumor suppression. Mol Cell Biol. 2005;25:661–70.

    Article  PubMed  CAS  Google Scholar 

  45. Hartley KO, Gell D, Smith GC, Zhang H, Divecha N, Connelly MA, Admon A, Lees-Miller SP, Anderson CW, Jackson SP. DNA-dependent protein kinase catalytic subunit: a relative of phosphatidylinositol 3-kinase and the ataxia telangiectasia gene product. Cell. 1995;82:849–56.

    Article  PubMed  CAS  Google Scholar 

  46. Dobbs TA, Tainer JA, Lees-Miller SP. A structural model for regulation of NHEJ by DNA-PKcs autophosphorylation. DNA Repair (Amst). 2010;9:1307–14.

    Article  CAS  Google Scholar 

  47. Pannicke U, Ma Y, Hopfner KP, Niewolik D, Lieber MR, Schwarz K. Functional and biochemical dissection of the structure-specific nuclease ARTEMIS. EMBO J. 2004;23:1987–97.

    Article  PubMed  CAS  Google Scholar 

  48. Ma Y, Schwarz K, Lieber MR. The Artemis:DNA-PKcs endonuclease cleaves DNA loops, flaps, and gaps. DNA Repair (Amst). 2005;4:845–51.

    Article  CAS  Google Scholar 

  49. Grawunder U, Wilm M, Wu X, Kulesza P, Wilson TE, Mann M, Lieber MR. Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature. 1997;388:492–5.

    Article  PubMed  CAS  Google Scholar 

  50. Critchlow SE, Bowater RP, Jackson SP. Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV. Curr Biol. 1997;7:588–98.

    Article  PubMed  CAS  Google Scholar 

  51. Strober W, Wochner RD, Barlow MH, McFarlin DE, Waldmann TA. Immunoglobulin metabolism in ataxia telangiectasia. J Clin Invest. 1968;47:1905–15.

    Article  PubMed  CAS  Google Scholar 

  52. McFarlin DE, Strober W, Waldmann TA. Ataxia-telangiectasia. Medicine (Baltimore). 1972;51:281–314.

    CAS  Google Scholar 

  53. Gatti RA, Bick M, Tam CF, Medici MA, Oxelius VA, Holland M, Goldstein AL, Boder E. Ataxia-Telangiectasia: a multiparameter analysis of eight families. Clin Immunol Immunopathol. 1982;23:501–16.

    Article  PubMed  CAS  Google Scholar 

  54. Oxelius VA, Berkel AI, Hanson LA. IgG2 deficiency in ataxia-telangiectasia. N Engl J Med. 1982;306:515–7.

    Article  PubMed  CAS  Google Scholar 

  55. Weemaes CM, Smeets DF, van der Burgt CJ. Nijmegen breakage syndrome: a progress report. Int J Radiat Biol. 1994;66:S185–8.

    Article  PubMed  CAS  Google Scholar 

  56. van Engelen BG, Hiel JA, Gabreels FJ, van den Heuvel LP, van Gent DC, Weemaes CM. Decreased immunoglobulin class switching in Nijmegen breakage syndrome due to the DNA repair defect. Hum Immunol. 2001;62:1324–7.

    Article  PubMed  Google Scholar 

  57. Gregorek H, Chrzanowska KH, Michalkiewicz J, Syczewska M, Madalinski K. Heterogeneity of humoral immune abnormalities in children with Nijmegen breakage syndrome: an 8-year follow-up study in a single centre. Clin Exp Immunol. 2002;130:319–24.

    Article  PubMed  CAS  Google Scholar 

  58. Pan Q, Petit-Frere C, Lahdesmaki A, Gregorek H, Chrzanowska KH, Hammarstrom L. Alternative end joining during switch recombination in patients with ataxia-telangiectasia. Eur J Immunol. 2002;32:1300–8.

    Article  PubMed  CAS  Google Scholar 

  59. Pan-Hammarstrom Q, Dai S, Zhao Y, van Dijk-Hard IF, Gatti RA, Borresen-Dale AL, Hammarstrom L. ATM is not required in somatic hypermutation of VH, but is involved in the introduction of mutations in the switch mu region. J Immunol. 2003;170:3707–16.

    PubMed  Google Scholar 

  60. Reina-San-Martin B, Chen HT, Nussenzweig A, Nussenzweig MC. ATM is required for efficient recombination between immunoglobulin switch regions. J Exp Med. 2004;200:1103–10.

    Article  PubMed  CAS  Google Scholar 

  61. Lumsden JM, McCarty T, Petiniot LK, Shen R, Barlow C, Wynn TA, Morse HC 3rd, Gearhart PJ, Wynshaw-Boris A, Max EE, Hodes RJ. Immunoglobulin class switch recombination is impaired in Atm-deficient mice. J Exp Med. 2004;200:1111–21.

    Article  PubMed  CAS  Google Scholar 

  62. Kracker S, Bergmann Y, Demuth I, Frappart PO, Hildebrand G, Christine R, Wang ZQ, Sperling K, Digweed M, Radbruch A. Nibrin functions in Ig class-switch recombination. Proc Natl Acad Sci USA. 2005;102:1584–9.

    Article  PubMed  CAS  Google Scholar 

  63. Reina-San-Martin B, Nussenzweig MC, Nussenzweig A, Difilippantonio S. Genomic instability, endoreduplication, and diminished Ig class-switch recombination in B cells lacking Nbs1. Proc Natl Acad Sci USA. 2005;102:1590–5.

    Article  PubMed  CAS  Google Scholar 

  64. Jones JF, Ritenbaugh CK, Spence MA, Hayward A. Severe combined immunodeficiency among the Navajo. I. Characterization of phenotypes, epidemiology, and population genetics. Hum Biol. 1991;63:669–82.

    PubMed  CAS  Google Scholar 

  65. van der Burg M, van Veelen LR, Verkaik NS, Wiegant WW, Hartwig NG, Barendregt BH, Brugmans L, Raams A, Jaspers NG, Zdzienicka MZ, van Dongen JJ, van Gent DC. A new type of radiosensitive T-B-NK+ severe combined immunodeficiency caused by a LIG4 mutation. J Clin Invest. 2006;116:137–45.

    Article  PubMed  Google Scholar 

  66. Blunt T, Finnie NJ, Taccioli GE, Smith GC, Demengeot J, Gottlieb TM, Mizuta R, Varghese AJ, Alt FW, Jeggo PA, et al. Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine SCID mutation. Cell. 1995;80:813–23.

    Article  PubMed  CAS  Google Scholar 

  67. Shin EK, Perryman LE, Meek K. A kinase-negative mutation of DNA-PK(CS) in equine SCID results in defective coding and signal joint formation. J Immunol. 1997;158:3565–9.

    PubMed  CAS  Google Scholar 

  68. Meek K, Kienker L, Dallas C, Wang W, Dark MJ, Venta PJ, Huie ML, Hirschhorn R, Bell T. SCID in Jack Russell terriers: a new animal model of DNA-PKcs deficiency. J Immunol. 2001;167:2142–50.

    PubMed  CAS  Google Scholar 

  69. Rooney S, Sekiguchi J, Zhu C, Cheng HL, Manis J, Whitlow S, DeVido J, Foy D, Chaudhuri J, Lombard D, Alt FW. Leaky Scid phenotype associated with defective V(D)J coding end processing in Artemis-deficient mice. Mol Cell. 2002;10:1379–90.

    Article  PubMed  CAS  Google Scholar 

  70. Nijnik A, Dawson S, Crockford TL, Woodbine L, Visetnoi S, Bennett S, Jones M, Turner GD, Jeggo PA, Goodnow CC, Cornall RJ. Impaired lymphocyte development and antibody class switching and increased malignancy in a murine model of DNA ligase IV syndrome. J Clin Invest. 2009;119:1696–705.

    Article  PubMed  CAS  Google Scholar 

  71. Taylor AM, Metcalfe JA, Thick J, Mak YF. Leukemia and lymphoma in ataxia telangiectasia. Blood. 1996;87:423–38.

    PubMed  CAS  Google Scholar 

  72. Liao MJ, Van Dyke T. Critical role for Atm in suppressing V(D)J recombination-driven thymic lymphoma. Genes Dev. 1999;13:1246–50.

    Article  PubMed  CAS  Google Scholar 

  73. Seidemann K, Tiemann M, Henze G, Sauerbrey A, Muller S, Reiter A. Therapy for non-Hodgkin lymphoma in children with primary immunodeficiency: analysis of 19 patients from the BFM trials. Med Pediatr Oncol. 1999;33:536–44.

    Article  PubMed  CAS  Google Scholar 

  74. van Gorp J, Doornewaard H, Verdonck LF, Klopping C, Vos PF, van den Tweel JG. Posttransplant T-cell lymphoma. Report of three cases and a review of the literature. Cancer. 1994;73:3064–72.

    Article  PubMed  Google Scholar 

  75. Ben-Omran TI, Cerosaletti K, Concannon P, Weitzman S, Nezarati MM. A patient with mutations in DNA ligase IV: clinical features and overlap with Nijmegen breakage syndrome. Am J Med Genet A. 2005;137A:283–7.

    Article  PubMed  Google Scholar 

  76. Moshous D, Pannetier C, Chasseval Rd R, Deist Fl F, Cavazzana-Calvo M, Romana S, Macintyre E, Canioni D, Brousse N, Fischer A, Casanova JL, Villartay JP. Partial T and B lymphocyte immunodeficiency and predisposition to lymphoma in patients with hypomorphic mutations in Artemis. J Clin Invest. 2003;111:381–7.

    Google Scholar 

  77. Enders A, Fisch P, Schwarz K, Duffner U, Pannicke U, Nikolopoulos E, Peters A, Orlowska-Volk M, Schindler D, Friedrich W, Selle B, Niemeyer C, Ehl S. A severe form of human combined immunodeficiency due to mutations in DNA ligase IV. J Immunol. 2006;176:5060–8.

    PubMed  CAS  Google Scholar 

  78. Toita N, Hatano N, Ono S, Yamada M, Kobayashi R, Kobayashi I, Kawamura N, Okano M, Satoh A, Nakagawa A, Ohshima K, Shindoh M, Takami T, Kobayashi K, Ariga T. Epstein-Barr virus-associated B-cell lymphoma in a patient with DNA ligase IV (LIG4) syndrome. Am J Med Genet A. 2007;143:742–5.

    PubMed  Google Scholar 

  79. Vanasse GJ, Halbrook J, Thomas S, Burgess A, Hoekstra MF, Disteche CM, Willerford DM. Genetic pathway to recurrent chromosome translocations in murine lymphoma involves V(D)J recombinase. J Clin Invest. 1999;103:1669–75.

    Article  PubMed  CAS  Google Scholar 

  80. Williams CJ, Grandal I, Vesprini DJ, Wojtyra U, Danska JS, Guidos CJ. Irradiation promotes V(D)J joining and RAG-dependent neoplastic transformation in SCID T-cell precursors. Mol Cell Biol. 2001;21:400–13.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Fumie Okubo for laboratory assistance. This work was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan (to Y.M., K.K.), and by Health and Labour Science Research Grants (to K.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Kamiya.

About this article

Cite this article

Masuda, Y., Kamiya, K. Molecular nature of radiation injury and DNA repair disorders associated with radiosensitivity. Int J Hematol 95, 239–245 (2012). https://doi.org/10.1007/s12185-012-1008-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-012-1008-y

Keywords

Navigation