Skip to main content
Log in

Erythropoiesis, anemia and the bone marrow microenvironment

  • Progress in Hematology
  • Seven wonders of erythropoiesis
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

The in vivo regulation of erythropoiesis involves the integration of a range of intrinsic and cell extrinsic cues. The macrophage contained within the erythroblastic island is central to the normal differentiation and support of erythroid development. The contributions of other cell types found within the local bone marrow microenvironment are also likely to play important roles depending on the context. Such cell types include osteoblasts, osteoclasts, adipocytes, endothelial cells in addition to developing hematopoietic cells. There are data correlating changes in erythroid homeostasis, particularly in anemic states such as hemoglobinopathies, with alterations in the skeleton. The interaction and coordination of erythroid development and skeletal homeostasis, particularly in setting of erythroid demand, may represent a centrally regulated axis that is important physiologically, pharmacologically and in the pathology of anemia states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chasis JA. Erythroblastic islands: specialized microenvironmental niches for erythropoiesis. Curr Opin Hematol. 2006;13(3):137–41.

    Article  PubMed  Google Scholar 

  2. Bessis M. Erythroblastic island, functional unity of bone marrow. Rev Hematol. 1958;13(1):8–11.

    CAS  PubMed  Google Scholar 

  3. Weiss L. The structure of bone marrow. Functional interrelationships of vascular and hematopoietic compartments in experimental hemolytic anemia: an electron microscopic study. J Morphol. 1965;117(3):467–537.

    Article  CAS  PubMed  Google Scholar 

  4. Mohandas N, Prenant M. Three-dimensional model of bone marrow. Blood. 1978;51(4):633–43.

    CAS  PubMed  Google Scholar 

  5. Junt T, Schulze H, Chen Z, Massberg S, Goerge T, Krueger A, et al. Dynamic visualization of thrombopoiesis within bone marrow. Science. 2007;317(5845):1767–70.

    Article  CAS  PubMed  Google Scholar 

  6. Takaku T, Malide D, Chen J, Calado RT, Kajigaya S, Young NS. Hematopoiesis in 3 dimensions: human and murine bone marrow architecture visualized by confocal microscopy. Blood. 2010;116(15):e41–55.

    Article  CAS  PubMed  Google Scholar 

  7. Scott CL, Robb L, Papaevangeliou B, Mansfield R, Nicola NA, Begley CG. Reassessment of interactions between hematopoietic receptors using common beta-chain and interleukin-3-specific receptor beta-chain-null cells: no evidence of functional interactions with receptors for erythropoietin granulocyte colony-stimulating factor, or stem cell factor. Blood. 2000;96(4):1588–90.

    CAS  PubMed  Google Scholar 

  8. Sinclair AM, Coxon A, McCaffery I, Kaufman S, Paweletz K, Liu L, et al. Functional erythropoietin receptor is undetectable in endothelial, cardiac, neuronal, and renal cells. Blood. 2010;115(21):4264–72.

    Article  CAS  PubMed  Google Scholar 

  9. Elliott S, Busse L, McCaffery I, Rossi J, Sinclair A, Spahr C, et al. Identification of a sensitive anti-erythropoietin receptor monoclonal antibody allows detection of low levels of EpoR in cells. J Immunol Methods. 2010;352(1–2):126–39.

    Article  CAS  PubMed  Google Scholar 

  10. Wu H, Liu X, Jaenisch R, Lodish HF. Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell. 1995;83(1):59–67.

    Article  CAS  PubMed  Google Scholar 

  11. Maiese K, Li F, Chong ZZ. New avenues of exploration for erythropoietin. JAMA. 2005;293(1):90–5.

    Article  CAS  PubMed  Google Scholar 

  12. Brines M, Grasso G, Fiordaliso F, Sfacteria A, Ghezzi P, Fratelli M, et al. Erythropoietin mediates tissue protection through an erythropoietin and common beta-subunit heteroreceptor. Proc Natl Acad Sci USA. 2004;101(41):14907–12.

    Article  CAS  PubMed  Google Scholar 

  13. Brines M, Patel NS, Villa P, Brines C, Mennini T, De Paola M, et al. Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin. Proc Natl Acad Sci USA. 2008;105(31):10925–30.

    Article  CAS  PubMed  Google Scholar 

  14. Elliott S, Busse L, Bass MB, Lu H, Sarosi I, Sinclair AM, et al. Anti-Epo receptor antibodies do not predict Epo receptor expression. Blood. 2006;107(5):1892–5.

    Article  CAS  PubMed  Google Scholar 

  15. Shiozawa Y, Jung Y, Ziegler AM, Pedersen EA, Wang J, Wang Z, et al. Erythropoietin couples hematopoiesis with bone formation. PLoS One. 2010;5(5):e10853.

    Google Scholar 

  16. Butler JM, Nolan DJ, Vertes EL, Varnum-Finney B, Kobayashi H, Hooper AT, et al. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell. 2010;6(3):251–64.

    Article  CAS  PubMed  Google Scholar 

  17. Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature. 2009;460(7252):259–63.

    Article  CAS  PubMed  Google Scholar 

  18. Raaijmakers MH, Mukherjee S, Guo S, Zhang S, Kobayashi T, Schoonmaker JA, et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature. 2010;464(7290):852–7.

    Article  CAS  PubMed  Google Scholar 

  19. Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell. 2008;132(4):598–611.

    Article  CAS  PubMed  Google Scholar 

  20. Suda T, Arai F, Hirao A. Hematopoietic stem cells and their niche. Trends Immunol. 2005;26(8):426–33.

    Article  CAS  PubMed  Google Scholar 

  21. Vichinsky EP. The morbidity of bone disease in thalassemia. Ann N Y Acad Sci. 1998;850:344–8.

    Article  CAS  PubMed  Google Scholar 

  22. Vogiatzi MG, Tsay J, Verdelis K, Rivella S, Grady RW, Doty S, et al. Changes in bone microarchitecture and biomechanical properties in the th3 thalassemia mouse are associated with decreased bone turnover and occur during the period of bone accrual. Calcif Tissue Int. 2010;86(6):484–94.

    Article  CAS  PubMed  Google Scholar 

  23. Greenberg PL, Young NS, Gattermann N. Myelodysplastic syndromes. Hematology Am Soc Hematol Educ Program. 2002;136–61.

  24. Perris AD, MacManus JP, Whitfield JF, Weiss LA. Parathyroid glands and mitotic stimulation in rat bone marrow after hemorrhage. Am J Physiol. 1971;220(3):773–8.

    CAS  PubMed  Google Scholar 

  25. Sathyanarayana P, Menon MP, Bogacheva O, Bogachev O, Niss K, Kapelle WS, et al. Erythropoietin modulation of podocalyxin and a proposed erythroblast niche. Blood. 2007;110(2):509–18.

    Article  CAS  PubMed  Google Scholar 

  26. Tanaka M, Miyajima A. Oncostatin M, a multifunctional cytokine. Rev Physiol Biochem Pharmacol. 2003;149:39–52.

    Google Scholar 

  27. Tanaka M, Hirabayashi Y, Sekiguchi T, Inoue T, Katsuki M, Miyajima A. Targeted disruption of oncostatin M receptor results in altered hematopoiesis. Blood. 2003;102(9):3154–62.

    Article  CAS  PubMed  Google Scholar 

  28. Miyajima A, Kinoshita T, Tanaka M, Kamiya A, Mukouyama Y, Hara T. Role of Oncostatin M in hematopoiesis and liver development. Cytokine Growth Factor Rev. 2000;11(3):177–83.

    Article  CAS  PubMed  Google Scholar 

  29. Walker EC, McGregor NE, Poulton IJ, Solano M, Pompolo S, Fernandes TJ, et al. Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice. J Clin Invest. 2010;120(2):582–92.

    Article  CAS  PubMed  Google Scholar 

  30. Lu L, Pelus LM, Broxmeyer HE, Moore MA, Wachter M, Walker D, et al. Enhancement of the proliferation of human marrow erythroid (BFU-E) progenitor cells by prostaglandin E requires the participation of OKT8-positive T lymphocytes and is associated with the density expression of major histocompatibility complex class II antigens on BFU-E. Blood. 1986;68(1):126–33.

    CAS  PubMed  Google Scholar 

  31. Gao Q, Xu M, Alander CB, Choudhary S, Pilbeam CC, Raisz LG. Effects of prostaglandin E2 on bone in mice in vivo. Prostaglandins Other Lipid Mediat. 2009;89(1–2):20–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Louise Purton and Jack Martin for comment. Work in CW laboratory is supported by grants from the Baker Trust and NHMRC (Australia). CW is the Leukaemia Foundation Philip Desbrow Senior Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl R. Walkley.

About this article

Cite this article

Walkley, C.R. Erythropoiesis, anemia and the bone marrow microenvironment. Int J Hematol 93, 10–13 (2011). https://doi.org/10.1007/s12185-010-0759-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-010-0759-6

Keywords

Navigation