Skip to main content

Advertisement

Log in

Quality of long-term cryopreserved umbilical cord blood units for hematopoietic cell transplantation

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the quality of long-term cryopreserved umbilical cord blood (CB) units for hematopoietic cell transplantation (HCT). The recovery of the number of total nucleated cell (TNC), hematopoietic progenitor cells (HPCs; CD34+ cells, colony-forming units-granulocyte/macrophages [CFU-GMs]), and the percentage of viable cells, CD34+ CD38− cells, and CD34+ CXCR4+ cells of CB units cryopreserved for 10 years for HCT were examined. Eighteen CB units cryopreserved for 10 years (as the study group) and for 1 month (as the control group), respectively, were analyzed. The recovery rate of TNC, CD34+ cells and CFU-GMs were 88.72 ± 16.40, 68.39 ± 18.37 and 42.28 ± 38.16% for the study group and 80.17 ± 14.46, 72.67 ± 20.38 and 49.61 ± 36.39% for the control group (p = 0.106, p = 0.513 and p = 0.559, respectively). There were no significant differences in the recovery rate of TNC, CD34+ cells and CFU-GMs between the study group and the control group. The mean basal percentage of viable cells, CD34+ CD38− cells, and CD34+ CXCR4+ cells after thawing were 83.69 ± 9.45, 9.11 ± 4.13 and 81.65 ± 10.82% for the study group. These results indicate that long-term cryopreservation does not negatively affect the quality of CB units for HCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wagner JE, Barker JN, DeFor TE, Baker KS, Blazar BR, Eide C, et al. Transplantation of unrelated donor umbilical cord blood in 102 patients with malignant and nonmalignant diseases: influence of CD34 cell dose and HLA disparity on treatment-related mortality and survival. Blood. 2002;100:1611–8.

    CAS  PubMed  Google Scholar 

  2. Laughlin MJ, Eapen M, Rubinstein P, Wagner JE, Zhang MJ, Champlin RE, et al. Outcomes after transplantation of cord blood or bone marrow from unrelated donors in adults with leukemia. N Engl J Med. 2004;351:2265–75.

    Article  CAS  PubMed  Google Scholar 

  3. Rocha V, Labopin M, Sanz G, Arcese W, Schwerdtfeger R, Bosi A, et al. Transplants of umbilical-cord blood or bone marrow from unrelated donors in adults with acute leukemia. N Engl J Med. 2004;351:2276–85.

    Article  CAS  PubMed  Google Scholar 

  4. Laroche V, McKenna DH, Moroff G, Schierman T, Kadidlo D, McCullough J. Cell loss and recovery in umbilical cord blood processing: a comparison of postthaw and postwash samples. Transfusion. 2005;45:1909–16.

    Article  PubMed  Google Scholar 

  5. Timeus F, Crescenzio N, Saracco P, Doria A, Fazio L, Albiani R, et al. Recovery of cord bloos hematopoietic progenitors after successive freezing and thawing procedures. Haematologica. 2003;88:74–9.

    PubMed  Google Scholar 

  6. Solves P, Mirabet V, Planelles D, Carbonell-Uberos F, Roig R. Influence of volume reduction and cryopresrvation methodologies on quality of thawed umbilical cord blood units for transplantation. Cryobiology. 2008;56:152–8.

    Article  CAS  PubMed  Google Scholar 

  7. Minegishi M, Itoh T, Fukawa N, Kitaura T, Miura J, Takahashi H, et al. Quality of umbilical cord blood CD34+ cells in a double-compartment freezing bag cryopreserved without a rate-controlled programmed freezer. Int J Hematol. 2007;85:78–84.

    Article  PubMed  Google Scholar 

  8. Beshlawy AE, Metwally HG, Khalek KA, Hammoud RF, Mousa SM. The effect of freezing on the recovery and expansion of umbilical cord blood hematopoietic stem cells. Exp Clin Transplant. 2009;7:50–5.

    PubMed  Google Scholar 

  9. Meyer TP, Hofmann B, Zaisserer J, Jacobs VR, Fuchs B, Rapp S, et al. Analysis and cryopreservation of hematopoietic stem and progenitor cells from umbilical cord blood. Cytotherapy. 2006;8:265–76.

    Article  CAS  PubMed  Google Scholar 

  10. Solves P, Mirabet V, Carbonell-Uberos F, Soler A. CD34+ cell content before freezing represents the hematopoietic stem cell content of thawed and washed cord blood units. Transfusion. 2005;45:116–7.

    Article  PubMed  Google Scholar 

  11. Koliakos G, Alamdari DH, Tsagias N, Kouzi-Koliakos K, Michaloudi E, Karagiannis V. A novel high-yield volume-reduction method for the cryopreservation of UC blood units. Cytotherapy. 2007;9:654–9.

    Article  CAS  PubMed  Google Scholar 

  12. Harris DT, Schumacher MJ, Rychlik S, Booth A, Acevedo A, Rubinstein P, et al. Collection, separation and cryopreservation of umbilical cord blood for use in transplantation. Bone Marrow Transplant. 1994;13:135–43.

    CAS  PubMed  Google Scholar 

  13. Broxmeyer HE, Cooper S. High-efficiency recovery of immature haematopoietic progenitor cells with extensive proliferative capacity from human cord blood cryopreserved for 10 years. Clin Exp Immunol. 1997;107:45–53.

    PubMed  Google Scholar 

  14. Kobylka P, Ivanyi P, Breur-Vriesendorp BS. Preservation of immunological and colony-forming capacities of long-term (15 years) cryopreserved cord blood cells. Transplantation. 1998;65:1275–8.

    Article  CAS  PubMed  Google Scholar 

  15. Mugishima H, Harada K, Chin M, Suzuki T, Takagi K, Hayakawa S, et al. Effects of long-term cryopreservation on hematopoietic progenitor cells in umbilical cord blood. Bone Marrow Transplant. 1999;23:395–6.

    Article  CAS  PubMed  Google Scholar 

  16. Broxmeyer HE, Srour EF, Hangoc G, Cooper S, Anderson SA, Bodine DM. High-efficiency recovery of functional hematopoietic progenitor and stem cells from human cord blood cryopreserved for 15 years. Proc Natl Acad Sci USA. 2003;100:645–50.

    Article  CAS  PubMed  Google Scholar 

  17. Hao QL, Shah AJ, Thiemann FT, Smogorzewska EM, Crooks GM. A functional comparison of CD34+ CD38− cells in cord blood and bone marrow. Blood. 1995;86:3745–53.

    CAS  PubMed  Google Scholar 

  18. Huang S, Terstappen LW. Lymphoid and myeloid differentiation of single human CD34+, HLA-DR+, CD38− hematopoietic stem cells. Blood. 1994;83:1515–26.

    CAS  PubMed  Google Scholar 

  19. Hao QL, Smogorzewska EM, Barsky LW, Crooks GM. In vitro identification of single CD34+ CD38− cells with both lymphoid and myeloid potential. Blood. 1998;91:4145–51.

    CAS  PubMed  Google Scholar 

  20. Oberlin E, Amara A, Bachelerie F, Bessia C, Virelizier JL, Arenzana-Seisdedos F, et al. The CXC chemokine SDF-1 is the ligand for LESTR/fusion and prevents infection by T-cell-line-adapted HIV-1. Nature. 1996;382:833–5.

    Article  CAS  PubMed  Google Scholar 

  21. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science. 1999;283:845–8.

    Article  CAS  PubMed  Google Scholar 

  22. Rubinstein P, Dobria L, Rosenfield RE, Adamson JW, Migliaccio G, Migliaccio AR, et al. Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proc Natl Acad Sci USA. 1995;92:10119–22.

    Article  CAS  PubMed  Google Scholar 

  23. Keeney M, Chin-Yee I, Weir K, Popma J, Nayar R, Sutherland DR. Single platform flow cytometric absolute CD34+ cell counts based on ISHAGE guidelines. Cytometry. 1998;34:61–70.

    Article  CAS  PubMed  Google Scholar 

  24. Kurtberg J, Cario MS, Fraser JK, Baxter-Lowe L, Cohen G, Carter SL, et al. Results of the cord blood transplantation (COBLT) study unrelated donor banking program. Transfusion. 2005;45:842–55.

    Article  Google Scholar 

  25. Migliaccio AR, Adamson JW, Stevens CE, Dobrila NL, Carrier CM, Rubinstein P. Cell dose and speed of engraftment in placenta/umbilical cord blood transplantation: graft progenitor cell content is a better predictor than nucleated cell quantity. Blood. 2000;96:2717–22.

    CAS  PubMed  Google Scholar 

  26. Nagamura-Inoue T, Shioya M, Sugo M, Cui Y, Takahashi A, Tomita S, et al. Wash-out of DMSO dose not improve the speed of engraftment of cord blood transplantation: follow-up of 46 adults patients with units shipped from a single cord blood bank. Transfusion. 2003;43:1285–94.

    Article  PubMed  Google Scholar 

  27. Isoyama K, Oda M, Kato K, Nagamura-Inoue T, Kai S, Kigasawa H, et al. Long-term outcome of cord blood transplantation from unrelated donors as an initial transplantation procedure for children with AML in Japan. Bone Marrow Transplant. 2010;45:69–77.

    Article  CAS  PubMed  Google Scholar 

  28. Ogawa A, Takahashi M. Hematopoietic cell counting of cryopreserved cord blood before transplantaiton (in Japanese). Ketsueki Shuyouka. 2005;51:127–32.

    Google Scholar 

  29. Yoo KH, Lee SH, Kim HJ, Sung KW, Jung HL, Cho EJ, et al. The impact of post-thaw colony-forming units-granulocyte/macrophage on engraftment following unrelated cord blood transplantation in pediatric recipients. Bone Marrow Transplant. 2007;39:512–21.

    Article  Google Scholar 

  30. Schmid I, Hausner MA, Cole SW, Uittenbogaart CH, Giorgi JV, Jamieson BD. Simultaneous flow cytometric measurement of viability and lymphocyte subset proliferation. J Immunol Methods. 2001;247:175–86.

    Article  CAS  PubMed  Google Scholar 

  31. Humpe A, Beck C, Schoch R, Kneba M, Horst HA. Establishment and optimization of a flow cytometric method for evaluation of viability of CD34+ cells after cryopreservation and comparison with trypan blue exclusion staining. Transfusion. 2005;45:1208–13.

    Article  PubMed  Google Scholar 

  32. Terstappen LW, Huang S, Safford M, Lansdorp PM, Loken MR. Sequential generations of hematopoietic colonies derived from single non-lineage committees CD34+ CD38− progenitor cells. Blood. 1991;77:1218–27.

    CAS  PubMed  Google Scholar 

  33. Bhatia M, Wang JC, Kapp U, Bonnet D, Dick JE. Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc Natl Acad Sci USA. 1997;94:5320–5.

    Article  CAS  PubMed  Google Scholar 

  34. Timeus F, Crescenzio N, Basso G, Ramenghi U, Saracco P, Gabutti V. Cell adhesion molecule expression in cord blood CD34+ cells. Stem Cells. 1998;16:120–6.

    Article  CAS  PubMed  Google Scholar 

  35. Tashiro K, Tada H, Heilker R, Shirozu M, Nakano T, Honjyo T. Signal sequence trap: a cloning strategy for secreted proteins and type I membrane proteins. Science. 1993;261:895–7.

    Article  Google Scholar 

  36. Spencer A, Jackson J, Bauch-Brown C. Enumeration of bone marrow “homing” haemopoietic stem cells from G-CSF-mobilised normal donors and influence on engraftment following allogeneic transplantation. Bone Marrow Transplant. 2001;28:1019–22.

    Article  CAS  PubMed  Google Scholar 

  37. Dabusti M, Lanza F, Campioni D, Castagnari B, Tieghi A, et al. CXCR-4 expression on bone marrow CD34+ cells prior to mobilization can predict mobilization adequacy in patients with hematologic malignancies. J Hematother Stem Cell Res. 2003;12:425–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a research grant on Tissue Engineering (H17-014) and a research grant on Allergic Disease and Immunology (H20-015) from the Japanese Ministry of Health, Labour and Welfare. We thank all the members of Kanagawa Cord Blood Bank their valuable support and assistance. We also acknowledge the excellent technical support of Ms. Ayumi Ogata and Mr. Takao Suzuki in conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shohei Yamamoto.

About this article

Cite this article

Yamamoto, S., Ikeda, H., Toyama, D. et al. Quality of long-term cryopreserved umbilical cord blood units for hematopoietic cell transplantation. Int J Hematol 93, 99–105 (2011). https://doi.org/10.1007/s12185-010-0755-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-010-0755-x

Keywords

Navigation