Skip to main content
Log in

Salinity Effects on Germination and Plant Growth of Prairie Cordgrass and Switchgrass

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Identifying bioenergy crops that can be produced successfully on marginal lands, such as those affected by salinity, reduces the pressure to produce energy crops on land that would otherwise be used to produce food crops. In this paper, the degree of salinity tolerance of “Red River” prairie cordgrass (Spartina pectinata Link) and “Cave-in-Rock” switchgrass (Panicum virgatum L.) was determined by evaluating seed germination, plant growth, ion uptake, and leaf anatomical feature responses in saline conditions. Red River seeds retained 50% of germination potential under high salinity up to 300 mM NaCl, whereas Cave-in-Rock seed germination was reduced by 80% at 300 mM NaCl. Red River seedlings survived up to 500 mM NaCl, while more than 30% of Cave-in-Rock did not survive above 100 mM NaCl in greenhouse experiments. Red River produced more biomass and second-generation tillers and had a greater root and shoot biomass ratio than Cave-in-Rock under all salinity ranges. Sodium accumulation in shoots of Cave-in-Rock increased with increasing salinity, whereas Red River maintained a low level of sodium in biomass through salt-gland exclusion. The increasing rate of selectivity coefficient for potassium over sodium in Red River was higher than in Cave-in-Rock with increasing salinity. Although seed germination and plant growth decreased as salinity increased, Red River retained its potential of seed germination and to produce new tillers and biomass under salinity stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Adam P (1990) Saltmarsh ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Ainouche ML, Baumel A, Salmon A, Yannic G (2003) Hybridization, polyploidy and speciation in Spartina (Poaceae). New Phytol 161:165–172

    Article  Google Scholar 

  3. Alam SM (1999) Nutrient uptake by plants under stress conditions. In: Pessarakli M (ed) Handbook of plant and crop stress, 2nd edn. University of Arizona, Tucson, pp 285–314

    Chapter  Google Scholar 

  4. Alderson J, Sharp WC (1995) Grass varieties in the United States. CRC Press, Boca Raton, pp 194–199

    Google Scholar 

  5. Alexopoulou E, Sharma N, Papatheohari Y, Christou M, Piscioneri I, Panoutsou C et al (2008) Biomass yields for upland and lowland switchgrass varieties grown in the Mediterranean region. Biomass and Bioenergy 32:926–933

    Article  Google Scholar 

  6. Almansouri M, Kinet JM, Lutts S (2001) Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant soil 231:243–487

    Article  CAS  Google Scholar 

  7. Barhoumi Z, Djebalim W, Smaoui A, Chaïbi W, Abdelly C (2007) Contribution of NaCl excretion to salt resistance of Aeluropus littoralis (Willd) Parl. J Plant Physiol 164:842–850

    Article  PubMed  CAS  Google Scholar 

  8. Boe A, Owens V, Gonzalez-Hernandez JL, Stein J, Lee DK, Koo BC (2009) Morphology and biomass production of prairie cordgrass on marginal lands. GCB Bioenergy 1:240–250

    Article  Google Scholar 

  9. Bradley PM, Morris JT (1991) Relative importance of ion exclusion, secretion and accumulation in Spartina alterniflora Loisel. J Exp Bot 42:1525–1532

    Article  CAS  Google Scholar 

  10. Chen ZH, Zhou MX, Newman IA, Mendham NJ, Zhang GP, Shabala S (2007) Potassium and sodium relations in salinized barley tissues as a basis of differential salt tolerance. Funct Plant Biol 34:150–162

    Article  CAS  Google Scholar 

  11. Debez A, Ben Hamed K, Grignon C, Abdelly C (2004) Salinity effects on germination, growth, and seed production of the halophyte Cakile maritima. Plant Soil 262:179–189

    Article  CAS  Google Scholar 

  12. FAO (2002) Crops and drops; making the best use of water for agriculture. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  13. FAO (2011) Terrastat Database, Food and Agriculture Organization of the United Nations. Available from: http://www.fao.org/nr/land/information-resources/terrastat/en/

  14. Flowers TJ, Hajibagheri MA, Leach RP, Roger WJ, Yeo AR (1989) Salt tolerance in the halophyte Suaeda maritima. In: Plant water relations and growth under stress. Yamada Science Foundation, Osaka, pp 173–180

  15. Gulzar S, Khan MA (2000) Germination responses in a coastal grass Urochondra setulosa. University of the Punjab, Lahore, p 47, 7th National Conference of Plant Scientists, (14–16 November 2000)

    Google Scholar 

  16. Hansen DJ, Dayanandan P, Kaufman PB, Brotherson JD (1975) Ecological adaptations of salt marsh grass, Distichlis spicata (Gramineae), and environmental factors affecting its growth and distribution. Am J Bot 63:635–650

    Article  Google Scholar 

  17. Hasegawa PM, Bressan RA, Whu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol and Plant Mol Biol 51:463–499

    Article  CAS  Google Scholar 

  18. Hendricks RC, Bushnell DM (2008) Halophytes Energy feedstocks: back to our roots. Symposium on transport phenomena and dynamics of rotating machinery, Honolulu, Hawaii, 17–22 February 2008

  19. Kafkafi U, Bernstein N (1997) Root growth under ionic composition and salinity stress. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  20. Khajeh-Hosseini M, Powell AA, Bingham IJ (2003) The interaction between salinity stress and seed vigour during germination of soybean seeds. Seed Sci Technol 31:715–725

    Google Scholar 

  21. Khan MA, Ungar IA (1984) The effect of salinity and temperature on germination of polymorphic seeds and growth of Atriplex triangularis Wild. Am J Bot 71:481–489

    Article  Google Scholar 

  22. Maathuis FJM, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot 84:123–133

    Article  CAS  Google Scholar 

  23. Maricle BR, Koteyeva NK, Voznesenskaya EV, Thomasson JR, Edwards GE (2009) Diversity in leaf anatomy, and stomatal distribution and conductance, between salt marsh and freshwater species in the C4 genus Spartina (Poaceae). New Phytol 184:216–233

    Article  PubMed  CAS  Google Scholar 

  24. McLaughlin SB, Kszos AL (2005) Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the US. Biomass Bioenergy 28:515–535

    Article  Google Scholar 

  25. Misra AN, Sahu SM, Misra M, Singh P, Meera I, Das N et al (1997) Sodium chloride induced changes in leaf growth, and pigment and protein contents in two rice cultivars. Biologia Plantarum 39:257–262

    Article  Google Scholar 

  26. Mobberly DG (1956) Taxonomy and distribution of the genus Spartina. Iowa State Coll J Sci 30:47–574

    Google Scholar 

  27. Montemayor MB, Price JS, Rochefort L, Boudreau S (2008) Temporal variations and spatial patterns in saline and waterlogged peat fields. Environ Exp Bot 62:333–342

    Article  Google Scholar 

  28. Moore KJ, Moser LE (1995) Quantifying developmental morphology of perennial grasses. Crop Sci 35:37–43

    Article  Google Scholar 

  29. Mooring MT, Cooper AW, Seneca ED (1971) Seed germination response and evidence for height ecophenes in Spartina alterniflora from North Carolina. Am J Bot 58:48–55

    Article  CAS  Google Scholar 

  30. Moser LE, Vogel KP (1995) Switchgrass, big bluestem, and indiangrass. In: Barnes RF, Miller DA, Nelson CJ (eds) Forages Vol. 1: an introduction to grassland agriculture, 5th edn. Iowa State University Press, Ames, pp 409–420

    Google Scholar 

  31. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  PubMed  CAS  Google Scholar 

  32. Nelson JM, Lane B, Freeling M (2002) Expression of a mutant maize gene in ventral leaf epidermis is sufficient to signal a switch of the leaf’s dorsoventral axis. Development 129:4581–4589

    PubMed  CAS  Google Scholar 

  33. Ottow EA, Brinker M, Teichmann T, Fritz E, Kaiser W, Brosché M et al (2005) Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress. Plant Physiol 139:1762–1772

    Article  PubMed  CAS  Google Scholar 

  34. Patel AD, Pandey AN (2008) Growth, water status and nutrient accumulation of seedlings of Holoptelea integrifolia (Roxb.) Planch in response to soil salinity. Plant Soil and Environ 54:367–373

    Google Scholar 

  35. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  PubMed  CAS  Google Scholar 

  36. Pujol JA, Calvo JF, Ramírez-Díaz L (2000) Recovery of germination from different osmotic conditions by four halophytes from southeastern Spain. Ann Bot 85:279–286

    Article  Google Scholar 

  37. Sautter EH (1962) Germination of switchgrass. J Range Manage 15:108–110

    Article  Google Scholar 

  38. Schulze ED, Beck E, Müller-Hohenstein K (2005) Plant ecology. Springer, Berlin, p 153

    Google Scholar 

  39. Seelig BD (2000) Salinity and sodicity in North Dakota soils. North Dakota State University, Extension Service, Fargo

    Google Scholar 

  40. Simmons BA, Loque D, Blanch HW (2008) Next-generation biomass feedstocks for biofeuls production. Gen Bio 9:242

    Article  Google Scholar 

  41. Sousa TA, Oliveira MT, Pereira JM (2006) Physiological indicators of plant water status of irrigated and non-irrigated grapevines grown in a low rainfall area of Portugal. Plant Soil 282:127–134

    Article  CAS  Google Scholar 

  42. Tabuchi T, Hiramatusu N, Hida Y (2010) Anatomical characteristics of leaf mesophyll on Rosarugosa and their hybrid plant. Acta Hort (ISHS) 870:137–142

    Google Scholar 

  43. Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L et al (2009) Beneficial biofuels—the food, energy, and environment trilemma. Science 325:270–271

    Article  PubMed  CAS  Google Scholar 

  44. Timson J (1965) New method of recording germination data. Nature 207:216–217

    Article  Google Scholar 

  45. Tober D, Duckwitz W, Sieler S (2007) Plant materials for salt-affected sites in the Northern Great Plains. USDA, NRCS, Bismarck

  46. Thomson JA, Alonso A, Miguel E (2002) Clarification of the taxonomic status and relationships of Pteridium caudatum (Dennstaedtiaceae) in Central and South America. Bot J Linn Soc 140:237–248

    Article  Google Scholar 

  47. Vasquez EA, Glenn EP, Guntenspergen GR, Brown JJ, Nelson SG (2005) Salt tolerance underlies the cryptic invasion of North American salt marshes by an introduced haplotype of the common reed Phragmites australis (Poaceae). Mar Eco Prog Se 298:1–8

    Article  Google Scholar 

  48. Vasquez EA, Glenn EP, Guntenspergen GR, Brown JJ, Nelson SG (2006) Salt tolerance and osmotic adjustment of Spartina alterniflora (Poaceae) and the invasive M haplotype of Phragmites australis (Poaceae) along a salinity gradient. Am J Bot 93:1784–1790

    Article  PubMed  CAS  Google Scholar 

  49. Vaughan DH, Cundiff JS, Parrish DJ (1989) Herbaceous crops on marginal sites erosion and economics. Biomass 20:199–208

    Article  Google Scholar 

  50. Warren RS, Baird LM, Thompson AK (1985) Salt tolerance in cultured cells of Spartina pectinata. Plant Cell Rep 4:84–87

    Article  Google Scholar 

  51. Warwick NWM, Halloran GM (1992) Accumulation and excretion of sodium, potassium and chloride leaves of differing ages in two accessions of brown beetle grass (Diplachne fusca (L.) Beauv. New Phytol 121:53–61

    Article  CAS  Google Scholar 

  52. Wicke B, Smeets E, Dornburg V, Vashev B, Gaiser T, Turkenburg W et al. (2011) The global technical and economic potential of bioenergy from salt-affected soil. Energy Environ Sci (in press)

  53. Wilson C, Lesch SM, Grieve CM (2000) Growth stage modulates salinity tolerance of New Zealand spinach (Teragonia tetragonioides, Pall.) and orach (Atriplex hortensis L.). Ann Bot 85:501–509

    Article  CAS  Google Scholar 

  54. Xu Z, Zhou G (2008) Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. J Exp Bot 59:3317–3325

    Article  PubMed  CAS  Google Scholar 

  55. Young AL (2003) Biotechnology for food, energy, and industrial products: New opportunities for bio-based products. Env Sci Pollut Res 2:71–72

    Google Scholar 

  56. Yuan J, Tiller KH, Al-Ahmad H, Stewart NR, Stewart CN Jr (2008) Plants to power: bioenergy to fuel the future. Trends Plant Sci 13:421–439

    Article  PubMed  CAS  Google Scholar 

  57. Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Rayburn, A.L., Voigt, T. et al. Salinity Effects on Germination and Plant Growth of Prairie Cordgrass and Switchgrass. Bioenerg. Res. 5, 225–235 (2012). https://doi.org/10.1007/s12155-011-9145-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-011-9145-3

Keywords

Navigation