Skip to main content

Advertisement

Log in

Effects of animal handling on striatal DAT availability in rats

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

A Correction to this article was published on 06 May 2023

This article has been updated

Abstract

Objective

Positron emission tomography (PET) is a non-invasive technique measuring quantification of physiological and biochemical processes in the living organism. However, there are many considerations including anesthesia and fasting to acquire small animal imaging. We aimed to evaluate the effects of anesthesia and fasting of rats in dopamine transporter (DAT) imaging acquisition.

Methods

Male Sprague Dawley (SD) rats aged 7 weeks and weighing 180–260 g were used in this study. Rats were randomly divided by 4 groups. Group A was kept under anesthesia for 40 min and fasted over 12 h. Group B was only fasted over 12 h. Group C was only kept under anesthesia for 40 min. Group D was neither kept under anesthesia nor fasted over 12 h. PET scans were started at 40 min after 18F-FP-CIT injection and obtained for 20 min. Volumes-of-interest for striatum and extrastriatal area were used for 18F-FP-CIT PET analysis. Cerebellum was considered as a reference region. Specific binding ratio (SBR) was calculated as follows: [(uptake of target-uptake of cerebellum)]/(uptake of cerebellum).

Results

SBR without fasting and anesthesia (group D) was significantly lower than those of other groups (vs group A, p = 0.0004; vs group B, p = 0.0377; vs group C, p = 0.0134). However, SBRs of extrastriatal area (p = 0.5120) were not affected by fasting and anesthesia.

Conclusions

In conclusion, the SBR of striatum was increased after anesthesia by isoflurane and fasting. When designing an experiment using DAT imaging, the effects of isoflurane and fasting should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Tremoleda JL, Kerton A, Gsell W. Anaesthesia and physiological monitoring during in vivo imaging of laboratory rodents: considerations on experimental outcomes and animal welfare. EJNMMI Res. 2012;2(1):44.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hildebrandt IJ, Su H, Weber WA. Anesthesia and other considerations for in vivo imaging of small animals. ILAR J. 2008;49(1):17–26.

    Article  CAS  PubMed  Google Scholar 

  3. Momosaki S, Hatano K, Kawasumi Y, Kato T, Hosoi R, Kobayashi K, et al. Rat-PET study without anesthesia: anesthetics modify the dopamine D1 receptor binding in rat brain. Synapse. 2004;54(4):207–13.

    Article  CAS  PubMed  Google Scholar 

  4. Mantz J, Varlet C, Lecharny JB, Henzel D, Lenot P, Desmonts JM. Effects of volatile anesthetics, thiopental, and ketamine on spontaneous and depolarization-evoked dopamine release from striatal synaptosomes in the rat. Anesthesiology. 1994;80(2):352–63.

    Article  CAS  PubMed  Google Scholar 

  5. Morton GJ, Meek TH, Schwartz MW. Neurobiology of food intake in health and disease. Nat Rev Neurosci. 2014;15(6):367–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Roseberry AG. Acute fasting increases somatodendritic dopamine release in the ventral tegmental area. J Neurophysiol. 2015;114(2):1072–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Papp EA, Leergaard TB, Calabrese E, Johnson GA, Bjaalie JG. Waxholm Space atlas of the Sprague Dawley rat brain. Neuroimage. 2014;97:374–86.

    Article  PubMed  Google Scholar 

  8. Schiffer WK, Mirrione MM, Biegon A, Alexoff DL, Patel V, Dewey SL. Serial microPET measures of the metabolic reaction to a microdialysis probe implant. J Neurosci Methods. 2006;155(2):272–84.

    Article  CAS  PubMed  Google Scholar 

  9. Khan KS, Hayes I, Buggy DJ. Pharmacology of anaesthetic agents II: inhalation anaesthetic agents. Contin Edu Anaesth Critic Care Pain. 2013;14(3):106–11.

    Article  Google Scholar 

  10. Friedman JA, Khurana VG, Anderson RE, Meyer FB. Cerebral Blood Flow: Physiology and Measurement Techniques. In: Moore AJ, Newell DW, editors. Neurosurgery: Principles and Practice. London: Springer; 2005. p. 301–314.

    Chapter  Google Scholar 

  11. Nakagawara J. Functional neuroimagings “Overview”. In: Cho BK, Tominaga T, editors. Moyamoya disease update. Tokyo: Springer; 2010.

    Google Scholar 

  12. Waelbers T, Peremans K, Gielen I, Vermeire S, Polis I. Brain perfusion, part 2: anesthesia and brain perfusion in small animals. Vlaams Diergeneeskundig Tijdschrift. 2010;79(3):179–88.

    Google Scholar 

  13. Van Aken H, Fitch W, Graham DI, Brussel T, Themann H. Cardiovascular and cerebrovascular effects of isoflurane-induced hypotension in the baboon. Anesth Analg. 1986;65(6):565–74.

    Article  PubMed  Google Scholar 

  14. McPherson RW, Traystman RJ. Effects of isoflurane on cerebral autoregulation in dogs. Anesthesiology. 1988;69(4):493–9.

    Article  CAS  PubMed  Google Scholar 

  15. Reinstrup P, Ryding E, Algotsson L, Berntman L, Uski T. Regional cerebral blood flow (SPECT) during anaesthesia with isoflurane and nitrous oxide in humans. Br J Anaesth. 1997;78(4):407–11.

    Article  CAS  PubMed  Google Scholar 

  16. Li CX, Patel S, Wang DJ, Zhang X. Effect of high dose isoflurane on cerebral blood flow in macaque monkeys. Magn Reson Imaging. 2014. https://doi.org/10.1016/j.mri.2014.04.019.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ori C, Dam M, Pizzolato G, Battistin L, Giron G. Effects of isoflurane anesthesia on local cerebral glucose utilization in the rat. Anesthesiology. 1986;65(2):152–6.

    Article  CAS  PubMed  Google Scholar 

  18. Lenz C, Rebel A, van Ackern K, Kuschinsky W, Waschke KF. Local cerebral blood flow, local cerebral glucose utilization, and flow-metabolism coupling during sevoflurane versus isoflurane anesthesia in rats. Anesthesiology. 1998;89(6):1480–8.

    Article  CAS  PubMed  Google Scholar 

  19. Spangler-Bickell MG, de Laat B, Fulton R, Bormans G, Nuyts J. The effect of isoflurane on (18)F-FDG uptake in the rat brain: a fully conscious dynamic PET study using motion compensation. EJNMMI Res. 2016;6(1):86.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Matsumura A, Mizokawa S, Tanaka M, Wada Y, Nozaki S, Nakamura F, et al. Assessment of microPET performance in analyzing the rat brain under different types of anesthesia: comparison between quantitative data obtained with microPET and ex vivo autoradiography. Neuroimage. 2003;20(4):2040–50.

    Article  PubMed  Google Scholar 

  21. Tsukada H, Nishiyama S, Kakiuchi T, Ohba H, Sato K, Harada N, et al. Isoflurane anesthesia enhances the inhibitory effects of cocaine and GBR12909 on dopamine transporter: PET studies in combination with microdialysis in the monkey brain. Brain Res. 1999;849(1–2):85–96.

    Article  CAS  PubMed  Google Scholar 

  22. Votaw J, Byas-Smith M, Hua J, Voll R, Martarello L, Levey AI, et al. Interaction of isoflurane with the dopamine transporter. Anesthesiology. 2003;98(2):404–11.

    Article  CAS  PubMed  Google Scholar 

  23. Byas-Smith MG, Li J, Szlam F, Eaton DC, Votaw JR, Denson DD. Isoflurane induces dopamine transporter trafficking into the cell cytoplasm. Synapse. 2004;53(2):68–73.

    Article  CAS  PubMed  Google Scholar 

  24. Ishida A, Nakajima W, Takada G. Short-term fasting alters neonatal rat striatal dopamine levels and serotonin metabolism: an in vivo microdialysis study. Brain Res Dev Brain Res. 1997;104(1–2):131–6.

    Article  CAS  PubMed  Google Scholar 

  25. Patterson TA, Brot MD, Zavosh A, Schenk JO, Szot P, Figlewicz DP. Food deprivation decreases mRNA and activity of the rat dopamine transporter. Neuroendocrinology. 1998;68(1):11–20.

    Article  CAS  PubMed  Google Scholar 

  26. Carvelli L, Moron JA, Kahlig KM, Ferrer JV, Sen N, Lechleiter JD, et al. PI 3-kinase regulation of dopamine uptake. J Neurochem. 2002;81(4):859–69.

    Article  CAS  PubMed  Google Scholar 

  27. Stouffer MA, Woods CA, Patel JC, Lee CR, Witkovsky P, Bao L, et al. Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward. Nat Commun. 2015;6:8543.

    Article  CAS  PubMed  Google Scholar 

  28. Kameyama M, Ishibash K, Wagatsuma K, Toyohara J, Ishii K. A pitfall of white matter reference regions used in [18F] florbetapir PET: a consideration of kinetics. Ann Nucl Med. 2019;33(11):848–54.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyoungjune Pak, Hyun-Yeol Nam or In Joo Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, S., Kim, K., Pak, K. et al. Effects of animal handling on striatal DAT availability in rats. Ann Nucl Med 34, 496–501 (2020). https://doi.org/10.1007/s12149-020-01476-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-020-01476-5

Keywords

Navigation