Skip to main content
Log in

Comparison Between Sensory and Nephelometric Evaluations of Tannin Fractions Obtained by Ultrafiltration of Red Wines

  • Published:
Chemosensory Perception

Abstract

Introduction

Although the assessment of red wine quality relies primarily on a sensory description of tannins, it may be usefully completed by some knowledge of the physicochemical properties of these tannins. The present study has a double aim: (1) to gain insight into the sensory properties of subpopulations of proanthocyanidic tannins of different molecular sizes (obtained through several ultrafiltration steps), as well as into the kinetics of the haze formed by these fractions when reacted with polyvinylpyrrolidone (as measured by nephelometry) and (2) to determine whether a correlation exists between the sensory and the nephelometric data.

Materials and Methods

To this end, two wines from different grape varieties were sequentially ultrafiltered to provide three tannic fractions which differed by the range of their polymerization degrees. Then, these fractions were added (individually or in combination) into their native wine matrix (previously deprived of all its polyphenols via charcoal treatment) according to a specific experimental design. These reconstituted wines were characterized by nephelometry and by a static (quantitative descriptive analysis) and a dynamic (temporal dominance of sensations) sensory method.

Results and Discussion

Wines containing the largest size tannins (highest range of polymerization degrees) were perceived as more astringent and cause drying in the mouth and after spitting. Concerning the temporality of perception, wines containing the fraction with the largest tannins provide long in-mouth drying, and the astringency and in-mouth drying perceptions were the most persistent features.

Conclusion

Finally, a highly positive correlation between nephelometric and quantitative descriptive analysis data was shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bate-Smith EC (1954) Astringency in foods. Food 23:419–429

    Google Scholar 

  • Carvalho E, Póvoas MJ, Mateus N, de Freitas V (2006) Application of flow nephelometry to the analysis of the influence of carbohydrates on protein–tannin interactions. J Sci Food Agric 86(6):891–896. doi:10.1002/jsfa.2430

    Article  CAS  Google Scholar 

  • Chapon L (1993) Nephelometry as a method for studying the relations between polyphenols and proteins. J Inst Brew 99(1):49–56. doi:10.1002/j.2050-0416.1993.tb01146.x

    Article  CAS  Google Scholar 

  • Colonna AE, Adams DO, Noble AC (2004) Comparison of procedures for reducing astringency carry-over effects in evaluation of red wines. Aust J Grape Wine Res 10(1):26–31. doi:10.1111/j.1755-0238.2004.tb00005.x

    Article  Google Scholar 

  • Condelli N, Dinnella C, Cerone A, Monteleone E, Bertuccioli M (2006) Prediction of perceived astringency induced by phenolic compounds II: criteria for panel selection and preliminary application on wine samples. Food Qual Prefer 17(1–2):96–107. doi:10.1016/j.foodqual.2005.04.009

    Article  Google Scholar 

  • Dinnella C, Recchia A, Tuorila H, Monteleone E (2011) Individual astringency responsiveness affects the acceptance of phenol-rich foods. Appetite 56(3):633–642. doi:10.1016/j.appet.2011.02.017

    Article  Google Scholar 

  • Freitas VD, Mateus N (2002) Nephelometric study of salivary protein–tannin aggregates. J Sci Food Agric 82(1):113–119. doi:10.1002/jsfa.1016

    Article  Google Scholar 

  • Gawel R, Oberholster A, Francis IL (2000) A ‘mouth-feel wheel’: terminology for communicating the mouth-feel characteristics of red wine. Aust J Grape Wine Res 6(3):203–207. doi:10.1111/j.1755-0238.2000.tb00180.x

    Article  Google Scholar 

  • Gawel R, Iland PG, Francis IL (2001) Characterizing the astringency of red wine: a case study. Food Qual Prefer 12(1):83–94. doi:10.1016/S0950-3293(00)00033-1

    Article  Google Scholar 

  • Granès D, Pic-Blateyron L, Negrel J, Bonnefond C (2009) L'analyse sensorielle descriptive quantifiée (ASDQ), une méthode pour un langage commun. Rev Oen 238:16–21

    Google Scholar 

  • Green BG (1993) Oral astringency: a tactile component of flavor. Acta Psychol 84(1):119–125. doi:10.1016/0001-6918(93)90078-6

    Article  CAS  Google Scholar 

  • Guinard JX, Pangborn RM, Lewis MJ (1986) Preliminary studies on acidity-astringency interactions in model solutions and wines. J Sci Food Agric 37(8):811–817. doi:10.1002/jsfa.2740370815

    Article  CAS  Google Scholar 

  • Hagerman AE, Butler LG (1981) The specificity of proanthocyanidin-protein interactions. J Biol Chem 256(9):4494–4497

    CAS  Google Scholar 

  • Holt HE, Francis IL, Field J, Herderich MJ, Iland PG (2008) Relationships between wine phenolic composition and wine sensory properties for Cabernet Sauvignon (Vitis vinifera L.). Aust J Grape Wine Res 14(3):162–176. doi:10.1111/j.1755-0238.2008.00020.x

    CAS  Google Scholar 

  • Ishikawa T, Noble AC (1995) Temporal perception of astringency and sweetness in red wine. Food Qual Prefer 6(1):27–33. doi:10.1016/0950-3293(94)P4209-O

    Article  Google Scholar 

  • Josse J, Pagès J, Husson F (2008) Testing the significance of the RV coefficient. Comput Stat Data Anal 53(1):82–91. doi:10.1016/j.csda.2008.06.012

    Article  Google Scholar 

  • Kauffman DL, Keller PJ (1979) The basic proline-rich proteins in human parotid saliva from a single subject. Arch Oral Biol 24(4):249–256. doi:10.1016/0003-9969(79)90085-2

    Article  CAS  Google Scholar 

  • Labbe D, Schlich P, Pineau N, Gilbert F, Martin N (2009) Temporal dominance of sensations and sensory profiling: a comparative study. Food Qual Prefer 20(3):216–221. doi:10.1016/j.foodqual.2008.10.001

    Article  Google Scholar 

  • Le Dien S, Pagès J (2003) Hierarchical multiple factor analysis: application to the comparison of sensory profiles. Food Qual Prefer 14(5–6):397–403. doi:10.1016/S0950-3293(03)00027-2

    Article  Google Scholar 

  • Lea AH (1992) Flavor, color, and stability in fruit products: the effect of polyphenols. In: Hemingway R, Laks P (eds) Plant Polyphenols, vol 59. Basic Life Sciences. Springer US, pp 827–847. doi:10.1007/978-1-4615-3476-1_49

  • Lesschaeve I, Noble AC (2005) Polyphenols: factors influencing their sensory properties and their effects on food and beverage preferences. Am J Clin Nutr 81(1):330S–335S

    CAS  Google Scholar 

  • Mateus N, Pinto R, Ruão P, de Freitas V (2004) Influence of the addition of grape seed procyanidins to Port wines in the resulting reactivity with human salivary proteins. Food Chem 84(2):195–200. doi:10.1016/S0308-8146(03)00201-2

    Article  CAS  Google Scholar 

  • McManus JP, Davis KG, Lilley TH, Haslam E (1981) The association of proteins with polyphenols. J Chem Soc Chem Commun (7):309b-311. doi:10.1039/C3981000309B

  • Meillon S, Urbano C, Schlich P (2009) Contribution of the temporal dominance of sensations (TDS) method to the sensory description of subtle differences in partially dealcoholized red wines. Food Qual Prefer 20(7):490–499. doi:10.1016/j.foodqual.2009.04.006

    Article  Google Scholar 

  • Monteleone E, Condelli N, Dinnella C, Bertuccioli M (2004) Prediction of perceived astringency induced by phenolic compounds. Food Qual Prefer 15(7–8):761–769. doi:10.1016/j.foodqual.2004.06.002

    Article  Google Scholar 

  • Pineau N, Schlich P, Cordelle S, Mathonnière C, Issanchou S, Imbert A, Rogeaux M, Etiévant P, Köster E (2009) Temporal dominance of sensations: construction of the TDS curves and comparison with time–intensity. Food Qual Prefer 20(6):450–455. doi:10.1016/j.foodqual.2009.04.005

    Article  Google Scholar 

  • Porter LJ, Hrstich LN, Chan BG (1985) The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 25(1):223–230. doi:10.1016/S0031-9422(00)94533-3

    Article  Google Scholar 

  • Quintana M, Palicki O, Lucchi G, Ducoroy P, Chambon C, Salles C, Morzel M (2009) Short-term modification of human salivary proteome induced by two bitter tastants, urea and quinine. Chem Percept 2(3):133–142. doi:10.1007/s12078-009-9048-2

    Article  Google Scholar 

  • Ribéreau-Gayon P, Glories Y, Maujean A, Dubourdieu D (1998) Les composés phénoliques. In: Dunod (ed) Traité d'œnologie, tome 2, chimie du vin - stabilisation et traitements, 2nd edn. Paris, pp 163–237

  • Robichaud JL, Noble AC (1990) Astringency and bitterness of selected phenolics in wine. J Sci Food Agric 53(3):343–353. doi:10.1002/jsfa.2740530307

    Article  CAS  Google Scholar 

  • Saucier C, Bourgeois G, Vitry C, Roux D, Glories Y (1997) Characterization of (+)−catechin−acetaldehyde polymers: a model for colloidal state of wine polyphenols. J Agric Food Chem 45(4):1045–1049. doi:10.1021/jf960597v

    Article  CAS  Google Scholar 

  • Törnwall O, Dinnella C, Keskitalo-Vuokko K, Silventoinen K, Perola M, Monteleone E, Kaprio J, Tuorila H (2011) Astringency perception and heritability among young Finnish twins. Chem Percept 4(4):134–144. doi:10.1007/s12078-011-9098-0

    Article  Google Scholar 

  • Vidal S, Courcoux P, Francis L, Kwiatkowski M, Gawel R, Williams P, Waters E, Cheynier V (2004) Use of an experimental design approach for evaluation of key wine components on mouth-feel perception. Food Qual Prefer 15(3):209–217. doi:10.1016/S0950-3293(03)00059-4

  • Wood SN (2006) Generalized additive models: an introduction with R. Broken sound parkway nw, Boca Raton

    Google Scholar 

  • Wu A, Csako G, Herp A (1994) Structure, biosynthesis, and function of salivary mucins. Mol Cell Biochem 137(1):39–55. doi:10.1007/BF00926038

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all panelists for their participation, Eve Danthe for the preparation work done at the beginning of each panel session, Patrik Schonenberger for his help in writing the English version of this article, Laure Steiner Convers for her advice on the manuscript, and the Schenk winery for providing the wines used in this study.

Compliance with Ethics Requirements

Conflict of Interest

The authors declare that they have no conflict of interest.

All persons gave their informed consent prior to their inclusion in the study.

The manuscript does not contain clinical studies or patient data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierrick Rébénaque.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rébénaque, P., Rawyler, A., Boldi, MO. et al. Comparison Between Sensory and Nephelometric Evaluations of Tannin Fractions Obtained by Ultrafiltration of Red Wines. Chem. Percept. 8, 33–43 (2015). https://doi.org/10.1007/s12078-015-9175-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12078-015-9175-x

Keywords

Navigation