Skip to main content
Log in

Human Trigeminal Sensory Responses to Vapor-Phase Stimuli

  • Published:
Chemosensory Perception

Abstract

Introduction

This review addresses human sensory and perceptual responses to vapor-phase stimulation of oral cavity, nasal cavities, and cornea/conjunctiva regions innervated by one or more sensory branches of the trigeminal nerve.

Methods

Attribution of responses to trigeminal input differs between regions. Specifying nasal cavities responses as trigeminal input is facilitated using comparisons of normosmics and anosmics to rule out cranial nerve I input. Cornea/conjunctiva sensory innervation is only from trigeminal branches. The oral cavity, receiving sensory innervation from several cranial nerves, could be more complex.

Results

Human responses to vapor-phase chemical stimulation differed depending upon which of the above locations was stimulated. Most vapor-phase chemicals were ineffective in the oral cavity. Anosmics’ nasal cavity responses occurred to many vapor-phase chemical stimuli and permitted some descriptions, while unilateral trigeminal neurectomy in normosmics substantially reduced judged nasal cavity vapor-phase odor intensity on the neurectomized side. Cornea/conjunctiva vapor-phase responses also occurred to many stimuli, with sensitivity comparable to the anosmic nasal cavity. Descriptions for cornea/conjunctiva stimulation were not always irritation, but qualitative perceptual data for low concentration are lacking. Cornea/conjunctiva thermal, mechanical, and CO2 stimulations were able to be distinguished and identified.

Conclusions

Nasal cavity trigeminal sensory responses to vapor-phase chemical stimulation differed from oral cavity responses but resembled corneal responses. Nasal cavity and possibly cornea/conjunctiva trigeminal responses to vapor-phase stimulation may make important contributions to flavor.

Implications

Available data question whether all trigeminal-based sensory/perceptual responses to vapor-phase stimuli should be considered as only components of a unitary “common chemical sense” perception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acosta MC, Tan ME, Belmonte C, Gallar J (2001) Sensations evoked by selective mechanical, chemical, and thermal stimulation of the conjunctiva and cornea. Invest Ophthalmol Vis Sci 42:2063–2067

    CAS  Google Scholar 

  • Acosta MC, Peral A, Luna C, Pintor J, Belmonte C, Gallar J (2004) Tear secretion induced by selective stimulation of corneal and conjunctival sensory nerve fibers. Invest Ophthalmol Vis Sci 45(7):2333–2336

    Article  Google Scholar 

  • Acosta MC, Alfaro ML, Borras F, Belmonte C, Gallar J (2006) Influence of age, gender and iris color on mechanical and chemical sensitivity of the cornea and conjunctiva. Exp Eye Res 83:932–938

    Article  CAS  Google Scholar 

  • Al-Aqaba MA, Fares U, Suleman H, Lowe J, Dua HS (2010) Architecture and distribution of human corneal nerves. Br J Ophthalmol 94(6):784–789

    Article  Google Scholar 

  • Alimohammadi H, Silver WL (2000) Evidence for nicotinic acetycholine receptors on nasal trigeminal nerve endings of the rat. Chem Senses 25:61–66

    Article  CAS  Google Scholar 

  • Anterior ethmoidal nerve. Wikipedia. (2014) http://en.wikipedia.org/wiki/Anterior_ethmoidal_nerve Accessed 23 September 2014

  • Auvray M, Spence C (2008) The multisensory perception of flavor. Conscious Cogn 17:1016–1031

    Article  Google Scholar 

  • Beckers HJ, Klooster J, Vrensen GF, Lamers WP (1992) Ultrastructural identification of trigeminal nerve endings in the rat cornea and iris. Invest Ophthalmol Vis Sci 33(6):1979–1986

    CAS  Google Scholar 

  • Bereiter DA, Hargreaves KM, Hu JW (2008) Trigeminal mechanisms of nociception: peripheral and brainstem organization. In: Bushnell MC, Basbaum AI (eds) The senses, vol volume 5. Elsevier, Amsterdam, pp pp 435–460

    Google Scholar 

  • Bolton B, Halpern BP (2010) Orthonasal and retronasal but not oral-cavity-only discrimination of vapor-phase fatty acids. Chem Senses 35:229–238

    Article  CAS  Google Scholar 

  • Brauchli P, Rüegg PB, Etzweiler F, Zeier H (1995) Electrocortical and autonomic alteration by administration of a pleasant and an unpleasant odor. Chem Senses 20:505–515

    Article  CAS  Google Scholar 

  • Braun T, Mack B, Kramer MF (2011) Solitary chemosensory cells in the respiratory and vomeronasal epithelium of the human nose: a pilot study. Rhinology 49(5):507–512

    Google Scholar 

  • Buttery RG, Ling LC, Bean MM (1978) Coumarin off-odor in wheat flour. J Agric Food Chem 26:179–180

    Article  CAS  Google Scholar 

  • Cain WS (1974) Contribution of the trigeminal nerve to perceived odor magnitude. Ann NY Acad Sci 237:28–34

    Article  CAS  Google Scholar 

  • Cain WS (1976) Olfaction and the common chemical sense: some psychophysical contrasts. Sens Proc 1:57–67

    CAS  Google Scholar 

  • Cain WS, Murphy CL (1980) Interaction between chemoreceptive modalities of odour and irritation. Nature 284:255–257

    Article  CAS  Google Scholar 

  • Chalè-Rush A, Burgess JR, Mattes RD (2007a) Multiple routes of chemosensitivity to free fatty acids in humans. Am J Physiol Gastrointest Liver Physiol 292:G1206–G1212

    Article  Google Scholar 

  • Chalè-Rush A, Burgess JR, Mattes RD (2007b) Evidence for human orosensory (taste?) sensitivity to free fatty acids. Chem Senses 32:423–431

    Article  Google Scholar 

  • Chen V, Halpern BP (2008) Retronasal but not oral-cavity-only Identification of “purely olfactory” odorants. Chem Senses 33:107–118

    Article  CAS  Google Scholar 

  • Chen X, Gallar J, Pozo MA, Baeza M, Belrnonte C (1995) C02 stimulation of the cornea: a comparison between human sensation and nerve activity in polymodal nociceptive afferents of the cat. Eur J Neurosci. 7: 1154-1163 Common Chemical Senses in Food Flavor. Chemesthesis. https://people.ok.ubc.ca/neggers/Chem422A/Taste.pdf. Accessed 23 September 2014

  • Cometto-Muñiz JE, Cain WS (1990) Thresholds for odor and nasal pungency. Physiol Behav 48:719–725

    Article  Google Scholar 

  • Cometto-Muñiz JE, Cain WS (1991) Nasal pungency, odor, and eye irritation thresholds for homologous acetates. Pharmacol, Biochem Behav 39:983–989

    Article  Google Scholar 

  • Cometto-Muñiz JE, Cain WS (1995) Relative sensitivity of the ocular trigeminal, nasal trigeminal and olfactory systems to airborne chemicals. Chem Senses 20(2):191–198

    Article  Google Scholar 

  • Cometto-Muñiz JE, Cain WS (1998) Trigeminal and olfactory sensitivity: comparison of modalities and methods of measurement. Int Arch Environ Health 71:105–110

    Article  Google Scholar 

  • Cometto-Muñiz JE, Cain WS, Abraham MH (1998) Nasal pungency and odor of homologous aldehydes and carboxylic acids. Exp Brain Res 118:180–188

    Article  Google Scholar 

  • Cometto-Muñiz JE, Cain WS, Abraham MH, Gola JMR (2001) Ocular and nasal trigeminal detection of butyl acetate and toluene presented singly and in mixtures. Tox Sci 63:233–244

    Article  Google Scholar 

  • Cometto-Muñiz JE, Cain WS, Abraham MH (2004a) Detection of single and mixed VOCs by smell and by sensory irritation. Indoor Air 14(Suppl 8):108–117

    Article  Google Scholar 

  • Cometto-Muñiz JE, Cain WS, Abraham MH (2004b) Chemosensory additivity in trigeminal chemoreception as reflected by detection of mixtures. Exp Brain Res 158:196–206

    Article  Google Scholar 

  • Dauzvardis M, Santaniello J (2008) CN V. Trigeminal nerve. Structure of the human body. Loyola University Chicago. Stritch School of Medicine. Loyola University Medical Education Network. http://www.meddean.luc.edu/lumen/MedEd/grossanatomy/h_n/cn/cn1/cn5.htm. Accessed 23 September 2014

  • Deibler DH, Lavin EH, Linforth RST, Taylor AJ, Acree TE (2001) Verification of a mouth simulator by in vivo measurements. J Agric Food Chem 49:1388–1393

    Article  CAS  Google Scholar 

  • Delwiche J (2004) The impact of perceptual interactions on perceived flavor. Food Qual Pref 15:137–146

    Article  Google Scholar 

  • Delwiche JF (2007) Interactions with flavor. Tasting science. http://www.tastingscience.info/Explained/Sensory.htm. Accessed 23 September 2014

  • Doty RL (1975) Intranasal trigeminal detection of chemical vapors by humans. Physiol Behav 14:855–859

    Article  CAS  Google Scholar 

  • Doty RL, Brugger WE, Jurs PC, Orndorff MA, Snyder PJ, Lowry D (1978) Intranasal trigeminal stimulation from odorous volatiles: psychometric responses from anosmic and normal humans. Physiol Behav 20(2):175–185

    Article  CAS  Google Scholar 

  • Dougherty P (2014) Somatosensory systems. Neuroscience Online. University of Texas Medical School at Houston. http://neuroscience.uth.tmc.edu/s2/chapter02.html. Accessed 23 September 2014

  • Dragich AM, Halpern BP (2008) An oral-cavity component in retronasal smelling of natural extracts. Physiol Behav 93:521–528

    Article  CAS  Google Scholar 

  • Finger TE, Silver WL, Bryant B (2004) Trigeminal nerve. In: Aldeman G & Smith BH (eds) Encyclopedia of Neuroscience, 3d Edition, Elsevier. CD-ROM version

  • Givens DB (2013) Taste cue. http://center-for-nonverbal-studies.org/taste.htm. Accessed 23 September 2014

  • Green BG (2012) Chemesthesis and the chemical senses as components of a “chemofensor complex”. Chem Senses 37:201–206

    Article  CAS  Google Scholar 

  • Green BG, Alvarez-Reeves M, George P, Akirav C (2005) Chemesthesis and taste: evidence of independent processing of sensation intensity. Physiol Behav 86(4):526–537

    Article  CAS  Google Scholar 

  • Halpern BP, Li TY, Melville KE, Collymore JN (2012) Vapor-phase TRPM8 agonists as retronasal and oral cavity stimuli. XVI International Symposium on Olfaction and Taste (ISOT). Abstracts p. 85-86. Poster session I, poster #237. http://www.isotxvi.com/ISOT_2012_abstracts.pdf. Accessed 23 September 2014

  • Haz-map. Octane (2014) http://hazmap.nlm.nih.gov/category-details?id=106&table=copytblagents. Accessed 23 September 2014

  • Heilmann S, Hummel T (2004) A new method for comparing orthonasal and retronasal olfaction. Behav Neurosci 118(2):412–419

    Article  Google Scholar 

  • Hettinger TP, Frank ME, Myers WE (1996) Are the tastes of polycose and monosodium glutamate unique? Chem Senses 21:341–347

    Article  CAS  Google Scholar 

  • Hornung DE, Kurtz D, Youngentob S (1993) Can anosmic patients separate trigeminal and non-trigeminal stimulants. Chem Senses 18: 573 (abstract #121) http://chemse.oxfordjournals.org.proxy.library.cornell.edu/content/18/5/523.full.pdf+html. Accessed 23 September 2014

  • Hornung DE, Kurtz D, Youngentob SL (1994) Anosmic patients can separate trigeminal and nontrigeminal stimulants. In: Kurihara K, Suzuki N, Ogawa H (eds) Olfaction and taste XI. Springer-Verlag, New York, p 635

    Chapter  Google Scholar 

  • Hummel T, Livermore A (2002) Intranasal chemosensory function of the trigeminal nerve and aspects of its relation to olfaction. Int Arch Occup Environ Health 75:305–313

    Article  Google Scholar 

  • Jacobs R, Wu C-H, Goossens K, Van Loven K, Van Hees J, Steenberghe D (2002) Oral mucosal versus cutaneous sensory testing: a review of the literature. J Oral Rehab 29(10):923–950

    Article  CAS  Google Scholar 

  • Kallas O, Halpern BP (2011) Retronasal discrimination between vapor-phase long-chain, aliphatic fatty acids. Chem Percept 4:16–24

    Article  CAS  Google Scholar 

  • Knipe H, Gaillard F (2014) Olfactory nerve. Radiology Reference Article. Radiopaedia.org. http://radiopaedia.org/articles/olfactory-nerve Accessed 23 September 2014

  • Kobal G (1985) Pain-related electrical potentials of the human nasal mucosa elicited by chemical stimulation. Pain 22:151–163

    Article  CAS  Google Scholar 

  • Kobal G, Hummel T (1991) Olfactory evoked potentials in humans. In: Getchell TV, Doty RL, Bartoshuk LM, Snow JB Jr (eds) Smell and taste in health and disease. Raven Press, New York, pp 255–275

    Google Scholar 

  • Kurtz DB, White TL, Sheehe PR, Hornung DE, Paul F, Kent PF (2001) Odorant confusion matrix: the influence of patient history on patterns of odorant identification and misidentification in hyposmia. Physiol Behav 72:595–602

    Article  CAS  Google Scholar 

  • Laing DG, Legha PK, Jinks AL, Hutchinson I (2003) Relationship between molecular structure, concentration and odor qualities of oxygenated aliphatic molecules. Chem Senses 28:57–69

    Article  CAS  Google Scholar 

  • Lapid H, Hummel T (2012) Recording odor-evoked response potentials at the human olfactory epithelium. Chem Senses 38:3–17

    Article  Google Scholar 

  • Laska M, Distel H, Hudson R (1997) Trigeminal perception of odorant quality in congenitally anosmic subjects. Chem Senses 22:447–456

    Article  CAS  Google Scholar 

  • Lawless HT (1996) Flavor. Chapter 8. In: Friedman MP, Carterette EC (eds) Cognitive ecology. Academic Press, San Diego, pp 325–380

    Chapter  Google Scholar 

  • Lawless HT, Heymann H (2010) Sensory evaluation of food, 2nd edn, Principles and practices. Springer, New York

    Book  Google Scholar 

  • Lawless HT, Schlake S, Smythe J, Lim J, Yang H, Chapman K, Bolton B (2004) Metallic taste and retronasal smell. Chem Senses 29:25–33

    Article  CAS  Google Scholar 

  • Lawrenson JG, Ruskell GL (1991) The structure of corpuscular nerve endings in the limbal conjunctiva of the human eye. J Anat 177:75–84

    CAS  Google Scholar 

  • Lee J, Halpern BP (2013) High-resolution time–intensity tracking of sustained human orthonasal and retronasal smelling during natural breathing. Chem Percept 6(1):20–25

    Article  CAS  Google Scholar 

  • Li TL, Shah, JK, Halpern, BP (2010) Retronasal but not oral-cavity-only identifications of isointense TRPM8 agonists. Chem Senses 35 (7): 637. AChemS 2010 Abstracts. Abstract #P177, page 88. http://www.flip-programs.com/ACHEMS/2010_Abstracts/. Accessed 23 September 2014

  • Lin W, Ogura T, Margolskee RF, Finger TE, Restrepo D (2008) TRPM5-expressing solitary chemosensory cells respond to odorous irritants. J Neurophysiol 99(3):1451–1460

    Article  CAS  Google Scholar 

  • Livermore A, Laing DG (1998) The influence of odor type on the discrimination and identification of odorants in multicomponent odor mixtures. Physiol Behav 65:311–320

    Article  CAS  Google Scholar 

  • Lundström JN, Hummel T (2006) Sex-specific hemispheric differences in cortical activation to a bimodal odor. Behav Brain Res 166(2):197–203

    Article  Google Scholar 

  • Maclver MB, Tanelian DL (1993) Structural and functional specialization of Aδ and C fiber free nerve endings innervating rabbit corneal epithelium. J Neurosci 13(10):4511–4524

    Google Scholar 

  • Mahajan SS, Goddik L, Qian MC (2004) Aroma compounds in sweet whey powder. J Dairy Sci 87:4057–4063

    Article  CAS  Google Scholar 

  • Marfurt CF, Kingsley RE, Echtenkamp SE (1989) Sensory and sympathetic innervation of the mammalian cornea. Invest Ophthal Vis Sci 30(3):461–472

    CAS  Google Scholar 

  • Maruniak JA, Mackay-Sim A (1984) The sense of taste. Chapter 2. In: Piggott JR (ed) Sensory analysis of foods. Elsevier, New York, p 36

    Google Scholar 

  • Mela DS, Christensen DM (1987) Sensory assessment of oiliness in a low moisture food. J Sens Stud 2:273–281

    Article  Google Scholar 

  • Moncrieff RW (1967) The chemical senses. CRC Press, Cleveland OH

    Google Scholar 

  • Müller LJ, Pels L, Vrensen GFL (1996) Ultrastructural organization of human corneal nerves. Invest Ophthal Vis Sci 37(4):476–488

    Google Scholar 

  • Murphy C (1983) Age-related effects on the threshold, psychophysical function, and pleasantness of menthol. J Geron 38:217–222

    Article  CAS  Google Scholar 

  • Mygind N, Dahl R (1998) Anatomy, physiology and function of the nasal cavities in health and disease. Adv Drug Del Res 29(1):3–12

    Article  CAS  Google Scholar 

  • Nasocilliary nerve. Wikipedia (2014) http://en.wikipedia.org/wiki/Nasociliary_nerve. Accessed 23 September 2014

  • Norman W (1999a) Nasal cavity, paranasal sinuses, maxillary division of trigeminal nerve. http://home.comcast.net/~wnor/lesson9.htm. Accessed 23 September 2014

  • Norman W (1999b) Oral Cavity, Oral Pharynx and Palatine Tonsil. http://home.comcast.net/~wnor/lesson10.htm. Accessed 23 September 2014

  • O’Neil MJ (2006) The Merck index, 14th edn. Merck, Whitehouse Station, NJ

    Google Scholar 

  • Oduntan O, Ruskell G (1992) The source of sensory fibres of the inferior conjunctiva of monkeys. Graefes Arch Clin Exp Ophthalmol 230:258–263

    Article  CAS  Google Scholar 

  • Parikh V, Lee-Lim AP, Halpern BP (2009) Retronasal and oral-cavity-only identification of air-phase trigeminal stimuli. Chem Percep 2(1):9–24

    Article  Google Scholar 

  • Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia A-S, McNamara JO, Williams SM (2004) Neuroscience, 3rd edn. Sinauer, Sunderland, MA, 773 p

    Google Scholar 

  • Sbarbati A, Bramanti P, Benati D, Merigo F (2010) The diffuse chemosensory system: exploring the iceberg toward the definition of functional roles. Prog Neurobiol 91(1):77–89

    Article  Google Scholar 

  • Shankland WE (2001) The trigeminal nerve. Part II: the ophthalmic division. Cranio 19(1):8–12

    CAS  Google Scholar 

  • Silver WL, Maruniak JA (1981) Trigeminal chemoreception in the nasal and oral cavities. Chem Senses 6(4):295–305

    Article  Google Scholar 

  • Silverman JD, Kruger L (1988) Lectin and neuropeptide labeling of separate populations of dorsal root ganglion neurons and associated “nociceptor” thin axons in rat testis and cornea whole-mount preparations. Somatosens Mot Res 5(3):259–267

  • Tewfik TL, Meyers AD (2014) Trigeminal nerve anatomy. emedicine. Medscape Reference. http://emedicine.medscape.com/article/1873373-overview. Accessed 23 September 2014

  • Tizzano M, Finger TE (2013) Chemosensors in the nose: guardians of the airways. Physiology 28:51–60

    Article  CAS  Google Scholar 

  • Usunoff KG, Marani E, Schoen JHR (1977) The trigeminal system in man. Adv Anat Embryol Cell Biol 136:1–126

    Article  Google Scholar 

  • Wajid NA, Halpern BP (2012) Oral cavity discrimination of vapor-phase long-chain 18-carbon fatty acids. Chem Senses 37:595–602

    Article  CAS  Google Scholar 

  • Walker JC, Kendal-Reedz M, Keiger CJ, Bencherif M, Silver WL (1996) Olfactory and trigeminal responses to nicotine. Drug Devel Res 38:160–168

    Article  CAS  Google Scholar 

  • What is Flavor? (1999) http://www.scienceofcooking.com/what_is_flavor.htm. Accessed 23 September 2014

  • Woolfall P, Coulthard A (2001) Trigeminal nerve: anatomy and pathology. Brit J Radiol 74:458–467

    Article  CAS  Google Scholar 

  • Yackinous C, Guinard J-X (2000) Flavor manipulation can enhance the impression of fat in some foods. J Food Sci 65:909–914

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I thank Thomas A. Cleland, Robert A. Raguso, and the anonymous reviewers for comments and recommendations on previous versions of this manuscript.

Compliance with Ethics Requirements

Conflict of Interest

Bruce P. Halpern declares that he has no conflict of interest.

All procedures followed in research done by Bruce P. Halpern or his laboratory were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008 (5). Informed consent was obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce P. Halpern.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halpern, B.P. Human Trigeminal Sensory Responses to Vapor-Phase Stimuli. Chem. Percept. 7, 126–139 (2014). https://doi.org/10.1007/s12078-014-9174-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12078-014-9174-3

Keywords

Navigation