Skip to main content
Log in

Solitary wave solutions of selective nonlinear diffusion-reaction equations using homogeneous balance method

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

An auto-Bäcklund transformation derived in the homogeneous balance method is employed to obtain several new exact solutions of certain kinds of nonlinear diffusion-reaction (D-R) equations. These equations arise in a variety of problems in physical, chemical, biological, social and ecological sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Radhey Shyam Kaushal, Structural analogy in understanding nature (Anamaya Publishers, New Delhi, 2003)

    Google Scholar 

  2. See for example, J N Kapur, Mathematical models in biology and medicine (Affiliated East-West Press, Pvt. Ltd., New Delhi, 1985)

    MATH  Google Scholar 

  3. J D Murray, Mathematical biology (Springer-Verlag, New York, 1993)

    Book  MATH  Google Scholar 

  4. C S Bertuglia and F Vaio, Nonlinearity, chaos and complexity: The dynamics of natural and social systems (Oxford University Press, New York, 2005)

    MATH  Google Scholar 

  5. A Coely et al (Eds), Bäcklund and Darboux transformations (Amer. Math. Soc., Providence, RI, 2001)

    Google Scholar 

  6. M L Wang, X Z Li and J L Jhang, Phys. Lett. A372, 417 (2007)

    ADS  Google Scholar 

  7. S Jhang, J L Tong and W Wang, Phys. Lett. A372, 2254 (2008)

    ADS  Google Scholar 

  8. Sirendaoreji, Phys. Lett. A356, 124 (2006)

    ADS  Google Scholar 

  9. R Kumar, R S Kaushal and A Prasad, Phys. Lett. A372, 1862 (2008)

    MathSciNet  ADS  Google Scholar 

  10. R Kumar, R S Kaushal and A Prasad, Phys. Lett. A372, 3395 (2008)

    MathSciNet  ADS  Google Scholar 

  11. E Yomba, Phys. Lett. A372, 1048 (2008)

    MathSciNet  ADS  Google Scholar 

  12. H Zhao, Chaos, Solitons and Fractals 36, 359 (2008); 36, 1283 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. J H He and X-H Wu, Chaos, Solitons and Fractals 30, 700 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. X-H Wu and J H He, Chaos, Solitons and Fractals 38, 903 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. S A El-Wakil, M A Abdou and A Hendi, Phys. Lett. A372, 830 (2008)

    MathSciNet  ADS  Google Scholar 

  16. M L Wang, Phys. Lett. A213, 279 (1996)

    ADS  Google Scholar 

  17. Z Y Yan and H Q Zhang, Phys. Lett. A285, 355 (2001)

    MathSciNet  ADS  Google Scholar 

  18. E Fan, Phys. Lett. A265, 353 (2000)

    ADS  Google Scholar 

  19. M A Abdou and A A Soliman, Physica D211, 1 (2005)

    MathSciNet  ADS  Google Scholar 

  20. Z M Odibat, Phys. Lett. A372, 4045 (2008)

    MathSciNet  ADS  Google Scholar 

  21. L Xu, Chaos, Solitons and Fractals 37, 137 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. O Cornejo-Perez and H C Rosu, Prog. Theor. Phys. 114, 533 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. D Bazeia, A Das, L Losano and M J dos Santos, Appl. Math. Lett. 23, 681 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. A L Larsen, Phys. Lett. A179, 284 (1993)

    ADS  Google Scholar 

  25. S A Elwakil, S K El-labany, M A Zahran and R Sabry, Chaos, Solitons and Fractals 17, 121 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. S A Elwakil, S K El-labany, M A Zahran and R Sabry, Chaos, Solitons and Fractals 19, 1083 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. X Y Wang, Phys. Lett. A131, 277 (1988)

    ADS  Google Scholar 

  28. M J Grimson and G C Barker, Phys. Rev. E49, 1680 (1994)

    ADS  Google Scholar 

  29. P S Bindu, M Senthilvelan and M Lakshmanan, J. Phys. A: Math. Gen. 34, L689 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. W Xiny and L Yuekai, Chin. Phys. Lett. 7, 145 (1990)

    Article  Google Scholar 

  31. D Ludwig, D D Jones and C S Holling, J. Anim. Ecol. 47, 315 (1978)

    Article  Google Scholar 

  32. L Debnath, Nonlinear partial differential equations for scientists and engineers (Birkhäuser, Boston, 1997)

    MATH  Google Scholar 

  33. X Y Wang, Phys. Lett. A112, 402 (1985)

    ADS  Google Scholar 

  34. X Y Wang, Z S Zhu and Y K Lu, J. Phys. A: Math. Gen. 23, 271 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. M L Martins, S C Ferreira Jr. and M J Vilela, Physiol. Rev. 4, 128 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Awadhesh Prasad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, R., Kaushal, R.S. & Prasad, A. Solitary wave solutions of selective nonlinear diffusion-reaction equations using homogeneous balance method. Pramana - J Phys 75, 607–616 (2010). https://doi.org/10.1007/s12043-010-0142-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-010-0142-4

Keywords

Navigation