Skip to main content
Log in

Variation of diffusivity with the cation radii in molten salts of superionic conductors containing iodine anion: A molecular dynamics study

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

A molecular dynamics study of the dependence of diffusivity of the cation on ionic radii in molten AgI is reported. We have employed modified Parinello-Rahman-Vashistha interionic pair potential proposed by Shimojo and Kobayashi.1 Our results suggest that the diffusivity of the cation exhibits an increase followed by a decrease as the ionic radius is increased. Several structural and dynamical properties are reported.

Diffusivity exhibits a maximum when cation radius is varied in a molten salt containing iodide anion. Computed properties include radial distribution function, diffusivity of cation and anion, velocity autocorrelation function, activation energy and intermediate scattering function. The results suggest that the anomalous maximum arises from the Levitation Effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shimojo F and Kobayashi M J 1991 Phys. Soc. Jpn. 60 3725

    Article  CAS  Google Scholar 

  2. Chandra S 1981 Superionic solids principles and application (Amsterdam: North-Holland)

  3. GoodEnough J B 1984 Proc. R. Soc. Lond. A 393 215

    Article  CAS  Google Scholar 

  4. Tallon J L 1988 Phys. Rev. B 38 9069

    Article  CAS  Google Scholar 

  5. Wood B C and Marzari N 2006 Phys. Rev. Lett 97 166401

    Article  Google Scholar 

  6. Hull S 2004 Rep. Prog. Phys. 67 1223

    Article  Google Scholar 

  7. Bitrin V and Trulls J 2007 J. Chem. Phys. 126 021105

    Article  Google Scholar 

  8. Ivanov-Shitz A K 2007 Crystallogr. Reports 52 302

    Article  CAS  Google Scholar 

  9. Nakamura K, Ihata K, Yokoyama Y, Nomura K and Kobayashi M 2001 Ionics 7 178

    Article  CAS  Google Scholar 

  10. Hull S, Berastegui P and Grippa A 2005 J. Phys. Cond. Matt. 17 1067

    Article  CAS  Google Scholar 

  11. Hull S, Keen D A, Madden P A and Wilson M 2007 J. Phys. Cond. Matt. 19 1

    Article  Google Scholar 

  12. Alcaraz O and Trullas J 2001 J. Chem. Phys. 115 7071

    Article  CAS  Google Scholar 

  13. Yokoyama Y and Kobayashi M 2003 Solid State Ionics 159 79

    Article  CAS  Google Scholar 

  14. Ivanov-Schitz A K, Mazniker B and Povolotskaya E 2003 Solid State Ionics 159 63

    Article  CAS  Google Scholar 

  15. Vashishta P, Ebbsjo I, Dejus R and Skold K 1985 J. Phys. C: Solid State Phys. 18 291

    Article  Google Scholar 

  16. Rino J P, Yvone M M, Hornos C, Giomal A, Antonio C, Ebbsjo I, Kalia R K and Vashishta P 1988 J. Chem. Phys. 89 7542

    Article  CAS  Google Scholar 

  17. Kumar P P and Yashonath S 2006 J.Chem. Sci. 118 135

    Article  CAS  Google Scholar 

  18. Flygare W H and Huggins R 1973 J. Phys. Chem. Solids 34 1199

    Article  CAS  Google Scholar 

  19. Parinello M and Rahman A 1980 Phys. Rev. Lett. 45 1196

    Article  Google Scholar 

  20. Parinello M, Rahman A and Vashishta P 1983 Phys. Rev. Lett. 50 1073

    Article  Google Scholar 

  21. Vashishta P and Rahman A 1978 Phys. Rev. Lett. 40 1340

    Article  Google Scholar 

  22. Kumar P P and Yashonath S 2002 J. Am. Chem. Soc. 124 3828

    Article  CAS  Google Scholar 

  23. Ghorai P K and Yashonath S 2005 J. Phys. Chem. 109 3979

    Article  CAS  Google Scholar 

  24. Yashonath S and Ghorai P K 2008 J. Phys. Chem. B 112 665

    Article  CAS  Google Scholar 

  25. Roselieb K and Jambon A 2002 Geochim. Coschim. Acta 66 109

    Article  CAS  Google Scholar 

  26. Huang S H, Yoshida F, You J, Jiang G and Xu K 1999 J. Phys. Cond. Matt. 11 5429

    Article  CAS  Google Scholar 

  27. Pauling L 1929 J. Am. Chem. Soc. 51 1010

    Article  CAS  Google Scholar 

  28. Forester T R and Smith W 1985 The DL-POLY-2.0 Reference Manual, version 2.0 (CCLRC, Daresbury Laboratory: Warrington, U.K.)

    Google Scholar 

  29. Kemball C 1950 Adv. Catal. 2 233

    Article  CAS  Google Scholar 

  30. Derouane E G 1987 Chem. Phys. Lett. 142 200

    Article  CAS  Google Scholar 

  31. Derouane E G, Andre J M and Lucas A 1988 J. Catal. 110 58

    Article  CAS  Google Scholar 

  32. Derycke I, Vigneron J, Lambin P, Lucas A and Derouane E G 1991 J. Chem. Phys. 94 4620

    Article  CAS  Google Scholar 

  33. Hansen J and McDonald I 1975 Phys. Rev. A 11 2111

    Article  Google Scholar 

  34. Agarwal M, Ganguly A, Chakravarty C 2009 J. Phys. Chem. B 113 15284

    Article  CAS  Google Scholar 

  35. Agarwal M and Chakravarty C 2009 Phys. Rev. E 79 030202(R)

    Article  Google Scholar 

  36. Kamala C, Ayappa K and Yashonath S 2002 Phys. Rev. E 65 061202

    Article  CAS  Google Scholar 

  37. Truhlar D G 1978 J. Chem. Edu. 55 309

    Article  CAS  Google Scholar 

  38. Kawakita Y, Tahara S, Fujii H, Kohara S and Takeda S 2007 J. Phys.: Cond. Matt. 19 335201

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S YASHONATH.

Additional information

Dedicated to Prof. N Sathyamurthy on his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

VARANASI, S.R., YASHONATH, S. Variation of diffusivity with the cation radii in molten salts of superionic conductors containing iodine anion: A molecular dynamics study. J Chem Sci 124, 159–166 (2012). https://doi.org/10.1007/s12039-011-0203-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-011-0203-3

Keywords

Navigation