Skip to main content

Advertisement

Log in

The P21-activated kinase expression pattern is different in non-small cell lung cancer and affects lung cancer cell sensitivity to epidermal growth factor receptor tyrosine kinase inhibitors

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Exploring methods for increasing epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) sensitivity has become a major focus in non-small cell lung cancer (NSCLC). Major downstream effectors of the Rho family small guanosine triphosphatases, P21-activated kinases (PAKs) activate the main signaling pathways downstream of EGFR and thus promote tumor cell proliferation. In this study, we explored the expression pattern of phosphorylated PAKs in NSCLC and their potential value as drug targets for treating cancer. The expression and prognostic significance of phosphorylated group I and II PAKs were evaluated in 182 patients with NSCLC. Immunohistochemical analysis revealed low group I PAK expression in normal lung tissues and increased expressed in the cytoplasm, particularly in lung squamous cell carcinoma. Abnormal group I PAK expression was associated with lymph node metastases and high tumor-node-metastases (TNM) stage in NSCLC patients and correlated with poor prognosis. We used group I PAK inhibitor (IPA3) to specifically decrease group I PAK activity in human lung cancer cell lines. Decreased group I PAK activity inhibited cell proliferation and combined IPA3 and EGFR-TKI (gefitinib) treatment inhibited cell proliferation in an obvious manner. Together, our results revealed the PAK expression pattern in NSCLC, and a role for group I PAK in cell proliferation, which provides evidence that decreased PAK activity may have a potential application as a molecular targeted therapy in advanced NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wu YL, Fukuoka M, Mok TS, Saijo N, Thongprasert S, Yang JC, et al. Tumor response and health-related quality of life in clinically selected patients from Asia with advanced non-small-cell lung cancer treated with first-line gefitinib: post hoc analyses from the IPASS study. Lung Cancer. 2013;81:280–7.

    Article  PubMed  Google Scholar 

  2. Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304:1497–500.

    Article  CAS  PubMed  Google Scholar 

  3. Zhou C, Wu YL, Chen G, Feng J, Liu XQ, Wang C, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2011;12:735–42.

    Article  CAS  PubMed  Google Scholar 

  4. Yu HA, Arcila ME, Rekhtman N, Sima CS, Zakowski MF, Pao W, et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res. 2013;19:2240–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Suda K, Mizuuchi H, Maehara Y, Mitsudomi T. Acquired resistance mechanisms to tyrosine kinase inhibitors in lung cancer with activating epidermal growth factor receptor mutation—diversity, ductility, and destiny. Cancer Metastasis Rev. 2012;31:807–14.

    Article  CAS  PubMed  Google Scholar 

  6. Kobayashi S, Boggon TJ, Dayaram T, Jänne PA, Kocher O, Meyerson M, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 2005;352:786–92.

    Article  CAS  PubMed  Google Scholar 

  7. Oxnard GR, Arcila ME, Chmielecki J, Ladanyi M, Miller VA, Pao W. New strategies in overcoming acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in lung cancer. Clin Cancer Res. 2011;17:5530–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Szczepanowska J. Involvement of Rac/Cdc42/PAK pathway in cytoskeletal rearrangements. Acta Biochim Pol. 2009;56:225–34.

    CAS  PubMed  Google Scholar 

  9. King H, Nicholas NS, Wells CM. Role of p-21-activated kinases in cancer progression. Int Rev Cell Mol Biol. 2014;309:347–87.

    Article  CAS  PubMed  Google Scholar 

  10. Molli PR, Li DQ, Murray BW, Rayala SK, Kumar R. PAK signaling in oncogenesis. Oncogene. 2009;28:2545–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Arias-Romero LE, Chernoff J. A tale of two Paks. Biol Cell. 2008;100:97–108.

    Article  CAS  PubMed  Google Scholar 

  12. Radu M, Semenova G, Kosoff R, Chernoff J. PAK signalling during the development and progression of cancer. Nat Rev Cancer. 2014;14:13–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Shrestha Y, Schafer EJ, Boehm JS, Thomas SR, He F, Du J, et al. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling. Oncogene. 2012;31:3397–408.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Chow HY, Jubb AM, Koch JN, Jaffer ZM, Stepanova D, Campbell DA, et al. p21-Activated kinase 1 is required for efficient tumor formation and progression in a Ras-mediated skin cancer model. Cancer Res. 2012;72:5966–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Tabusa H, Brooks T, Massey AJ. Knockdown of PAK4 or PAK1 inhibits the proliferation of mutant KRAS colon cancer cells independently of RAF/MEK/ERK and PI3K/AKT signaling. Mol Cancer Res. 2013;11:109–21.

    Article  CAS  PubMed  Google Scholar 

  16. Baker NM, Chow HY, Chernoff J, Der CJ. Molecular pathways: targeting RAC-p21-activated serine-threonine kinase signaling in RAS-driven cancers. Clin Cancer Res. 2014;20:4740–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Ohshiro K, Bui-Nguyen TM, Natha RSD, Schwartz AM, Levine P, Kumar R. Thrombin stimulation of inflammatory breast cancer cells leads to aggressiveness via the EGFR-PAR1-Pak1 pathway. Int J Biol. 2012;27:e305–13.

    CAS  Google Scholar 

  18. Liu Y, Dong QZ, Wang S, Fang CQ, Miao Y, Wang L, et al. Abnormal expression of Pygopus 2 correlates with a malignant phenotype in human lung cancer. BMC Cancer. 2013;13:346.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Ong CC, Jubb AM, Haverty PM, Zhou W, Tran V, Truong T, et al. Targeting p21-activated kinase 1 (PAK1) to induce apoptosis of tumor cells. Proc Natl Acad Sci USA. 2011;108:7177–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Eswaran J, Li DQ, Shah A, Kumar R. Molecular pathways: targeting p21-activated kinase 1 signaling in cancer—opportunities, challenges, and limitations. Clin Cancer Res. 2012;18:3743–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Wang Z, Pedersen E, Basse A, Lefever T, Peyrollier K, Kapoor S, et al. Rac1 is crucial for Ras-dependent skin tumor formation by controlling Pak1-Mek-Erk hyperactivation and hyperproliferation in vivo. Oncogene. 2010;29:3362–73.

    Article  CAS  PubMed  Google Scholar 

  22. Higuchi M, Onishi K, Kikuchi C, Gotoh Y. Scaffolding function of PAK in the PDK1-Akt pathway. Nat Cell Biol. 2008;10:1356–64.

    Article  CAS  PubMed  Google Scholar 

  23. Arias-Romero LE, Villamar-Cruz O, Huang M, Hoeflich KP, Chernoff J. Pak1 kinase links ErbB2 to beta-catenin in transformation of breast epithelial cells. Cancer Res. 2013;73:3671–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. He H, Huynh N, Liu KH, Malcontenti-Wilson C, Zhu J, Christophi C, et al. P-21 activated kinase 1 knockdown inhibits beta-catenin signalling and blocks colorectal cancer growth. Cancer Lett. 2012;317:65–71.

    Article  CAS  PubMed  Google Scholar 

  25. He H, Shulkes A, Baldwin GS. PAK1 interacts with beta-catenin and is required for the regulation of the beta-catenin signalling pathway by gastrins. Biochim Biophys Acta. 2008;1783:1943–54.

    Article  CAS  PubMed  Google Scholar 

  26. Wong LE, Reynolds AB, Dissanayaka NT, Minden A. p120-catenin is a binding partner and substrate for Group B Pak kinases. J Cell Biochem. 2010;110:1244–54.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 30900562 to Yang Liu and No. 81302022 to Qian-Ze Dong), the Foundation of Liaoning Educational Committee (No. L2015583 to Yang Liu), and the Foundation of Liaoning Science and Technology Committee (No. 65233037 to Si Wang). All the authors of this manuscript have no actual or potential conflict related to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, S., Dong, QZ. et al. The P21-activated kinase expression pattern is different in non-small cell lung cancer and affects lung cancer cell sensitivity to epidermal growth factor receptor tyrosine kinase inhibitors. Med Oncol 33, 22 (2016). https://doi.org/10.1007/s12032-016-0735-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-016-0735-y

Keywords

Navigation