Skip to main content

Advertisement

Log in

Pericyte antigens in angiomyolipoma and PEComa family tumors

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Perivascular epithelioid cell tumors (PEComas) are an uncommon family of soft tissue tumors with dual myoid–melanocytic differentiation. Although PEComa family tumors commonly demonstrate a perivascular growth pattern, pericyte antigen expression has not yet been examined among this unique tumor group. Previously, we demonstrated that a subset of perivascular soft tissue tumors exhibit a striking pericytic immunophenotype, with diffuse expression of αSMA, CD146, and PDGFRβ. Here, we describe the presence of pericyte antigens across a diverse group of PEComa family tumors (n = 19 specimens). Results showed that pericyte antigens differed extensively by histological appearance. Typical angiomyolipoma (AML) specimens showed variable expression of pericyte antigens among both perivascular and myoid-appearing cells. In contrast, AML specimens with a predominant spindled morphology showed diffuse expression of pericyte markers, including αSMA, CD146, and PDGFRβ. AML samples with predominant epithelioid morphology showed a marked reduction in or the absence of immunoreactivity for pericyte markers. Lymphangiomyoma samples showed more variable and partial pericyte marker expression. In summary, pericyte antigen expression is variable among PEComa family tumors and largely varies by tumor morphology. Pericytic marker expression in PEComa may represent a true pericytic cell of origin, or alternatively aberrant pericyte marker adoption. Markers of pericytic differentiation may be of future diagnostic utility for the evaluation of mesenchymal tumors, or identify actionable signaling pathways for future therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Weiss SW, Goldblum JR. Enzinger and Weiss’s soft tissue tumors. Philadelphia, PA: Mosby Elsevier; 2008.

    Google Scholar 

  2. Xu AM, Zhang SH, Zheng JM, Zheng WQ, Wu MC. Pathological and molecular analysis of sporadic hepatic angiomyolipoma. Hum Pathol. 2006;37:735–41.

    Article  CAS  PubMed  Google Scholar 

  3. Hornick JL, Fletcher CD. PEComa: what do we know so far? Histopathology. 2006;48:75–82.

    Article  CAS  PubMed  Google Scholar 

  4. Nese N, Martignoni G, Fletcher CD, Gupta R, Pan CC, Kim H, Ro JY, Hwang IS, Sato K, Bonetti F, Pea M, Amin MB, Hes O, Svec A, Kida M, Vankalakunti M, Berel D, Rogatko A, Gown AM. Pure epithelioid PEComas (so-called epithelioid angiomyolipoma) of the kidney: a clinicopathologic study of 41 cases—detailed assessment of morphology and risk stratification. Am J Surg Pathol. 2011;35:161–76.

    Article  PubMed  Google Scholar 

  5. Frack MD, Simon L, Dawson BH. The lymphangiomyomatosis syndrome. Cancer. 1968;22:428–37.

    Article  CAS  PubMed  Google Scholar 

  6. Liebow AA, Castleman B. Benign clear cell (“sugar”) tumors of the lung. Yale J Biol Med. 1971;43:213–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Folpe AL, Mentzel T, Lehr HA, Fisher C, Balzer BL, Weiss SW. Perivascular epithelioid cell neoplasms of soft tissue and gynecologic origin: a clinicopathologic study of 26 cases and review of the literature. Am J Surg Pathol. 2005;29:1558–75.

    Article  PubMed  Google Scholar 

  8. Fisher C. Unusual myoid, perivascular, and postradiation lesions, with emphasis on atypical vascular lesion, postradiation cutaneous angiosarcoma, myoepithelial tumors, myopericytoma, and perivascular epithelioid cell tumor. Semin Diagn Pathol. 2013;30:73–84.

    Article  PubMed  Google Scholar 

  9. Sukov WR, Cheville JC, Amin MB, Gupta R, Folpe AL. Perivascular epithelioid cell tumor (PEComa) of the urinary bladder: report of 3 cases and review of the literature. Am J Surg Pathol. 2009;33:304–8.

    Article  PubMed  Google Scholar 

  10. Pan CC, Yang AH, Chiang H. Malignant perivascular epithelioid cell tumor involving the prostate. Arch Pathol Lab Med. 2003;127:E96–8.

    PubMed  Google Scholar 

  11. Lian DW, Chuah KL, Cheng MH, Yap WM. Malignant perivascular epithelioid cell tumour of the fibula: a report and a short review of bone perivascular epithelioid cell tumour. J Clin Pathol. 2008;61:1127–9.

    Article  CAS  PubMed  Google Scholar 

  12. Pea M, Bonetti F, Zamboni G, Martignoni G, Riva M, Colombari R, Mombello A, Bonzanini M, Scarpa A, Ghimenton C. Melanocyte-marker-HMB-45 is regularly expressed in angiomyolipoma of the kidney. Pathology. 1991;23:185–8.

    Article  CAS  PubMed  Google Scholar 

  13. Corselli M, Chen CW, Sun B, Yap S, Rubin JP, Peault B. The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells. Stem Cells Dev. 2012;21:1299–308.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Murray IR, West CC, Hardy WR, James AW, Park TS, Nguyen A, Tawonsawatruk T, Lazzari L, Soo C, Peault B. Natural history of mesenchymal stem cells, from vessel walls to culture vessels. Cell Mol Life Sci. 2014;71:1353–74.

    Article  CAS  PubMed  Google Scholar 

  15. Shen J, Shrestha S, Yen Y, Asatrian G, Mravic M, Soo C, Ting K, Dry S, Peault B, James A. Pericyte antigens in perivascular soft tissue tumors. Int J Surg Pathol. 2015. doi:10.1177/1066896915591272.

    Google Scholar 

  16. Siroky BJ, Yin H, Dixon BP, Reichert RJ, Hellmann AR, Ramkumar T, Tsuchihashi Z, Bunni M, Dillon J, Bell PD, Sampson JR, Bissler JJ. Evidence for pericyte origin of TSC-associated renal angiomyolipomas and implications for angiotensin receptor inhibition therapy. Am J Physiol Renal Physiol. 2014;307:F560–70.

    Article  CAS  PubMed  Google Scholar 

  17. Brimo F, Robinson B, Guo C, Zhou M, Latour M, Epstein JI. Renal epithelioid angiomyolipoma with atypia: a series of 40 cases with emphasis on clinicopathologic prognostic indicators of malignancy. Am J Surg Pathol. 2010;34:715–22.

    PubMed  Google Scholar 

  18. Trere D, Montanaro L, Ceccarelli C, Barbieri S, Cavrini G, Santini D, Taffurelli M, Derenzini M. Prognostic relevance of a novel semiquantitative classification of Bcl2 immunohistochemical expression in human infiltrating ductal carcinomas of the breast. Ann Oncol. 2007;18:1004–14.

    Article  CAS  PubMed  Google Scholar 

  19. Shih IM, Nesbit M, Herlyn M, Kurman RJ. A new Mel-CAM (CD146)-specific monoclonal antibody, MN-4, on paraffin-embedded tissue. Mod Pathol. 1998;11:1098–106.

    CAS  PubMed  Google Scholar 

  20. Palman C, Bowen-Pope DF, Brooks JJ. Platelet-derived growth factor receptor (beta-subunit) immunoreactivity in soft tissue tumors. Lab Invest. 1992;66:108–15.

    CAS  PubMed  Google Scholar 

  21. Ozerdem U. Targeting of pericytes diminishes neovascularization and lymphangiogenesis in prostate cancer. Prostate. 2006;66:294–304.

    Article  CAS  PubMed  Google Scholar 

  22. Ozerdem U. Targeting neovascular pericytes in neurofibromatosis type 1. Angiogenesis. 2004;7:307–11.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3:301–13.

    Article  CAS  PubMed  Google Scholar 

  24. Bondjers C, Kalen M, Hellstrom M, Scheidl SJ, Abramsson A, Renner O, Lindahl P, Cho H, Kehrl J, Betsholtz C. Transcription profiling of platelet-derived growth factor-B-deficient mouse embryos identifies RGS5 as a novel marker for pericytes and vascular smooth muscle cells. Am J Pathol. 2003;162:721–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Cho H, Kozasa T, Bondjers C, Betsholtz C, Kehrl JH. Pericyte-specific expression of Rgs5: implications for PDGF and EDG receptor signaling during vascular maturation. Faseb J. 2003;17:440–2.

    CAS  PubMed  Google Scholar 

  26. Wakui S, Yokoo K, Muto T, Suzuki Y, Takahashi H, Furusato M, Hano H, Endou H, Kanai Y. Localization of Ang-1, -2, Tie-2, and VEGF expression at endothelial-pericyte interdigitation in rat angiogenesis. Lab Invest. 2006;86:1172–84.

    CAS  PubMed  Google Scholar 

  27. Alliot F, Rutin J, Leenen PJ, Pessac B. Pericytes and periendothelial cells of brain parenchyma vessels co-express aminopeptidase N, aminopeptidase A, and nestin. J Neurosci Res. 1999;58:367–78.

    Article  CAS  PubMed  Google Scholar 

  28. Klein D, Meissner N, Kleff V, Jastrow H, Yamaguchi M, Ergun S, Jendrossek V. Nestin(+) tissue-resident multipotent stem cells contribute to tumor progression by differentiating into pericytes and smooth muscle cells resulting in blood vessel remodeling. Front Oncol. 2014;4:169.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Lugassy C, Peault B, Wadehra M, Kleinman HK, Barnhill RL. Could pericytic mimicry represent another type of melanoma cell plasticity with embryonic properties? Pigment Cell Melanoma Res. 2013;26:746–54.

    Article  PubMed  Google Scholar 

  30. Lugassy C, Wadehra M, Li X, Corselli M, Akhavan D, Binder SW, Peault B, Cochran AJ, Mischel PS, Kleinman HK, Barnhill RL. Pilot study on “pericytic mimicry” and potential embryonic/stem cell properties of angiotropic melanoma cells interacting with the abluminal vascular surface. Cancer Microenviron. 2013;6:19–29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Barnhill RL, Lugassy C. Angiotropic malignant melanoma and extravascular migratory metastasis: description of 36 cases with emphasis on a new mechanism of tumour spread. Pathology. 2004;36:485–90.

    Article  PubMed  Google Scholar 

  32. Bald T, Quast T, Landsberg J, Rogava M, Glodde N, Lopez-Ramos D, Kohlmeyer J, Riesenberg S, van den Boorn-Konijnenberg D, Hömig-Hölzel C, Reuten R, Schadow B, Weighardt H, Wenzel D, Helfrich I, Schadendorf D, Bloch W, Bianchi ME, Lugassy C, Barnhill RL, Koch M, Fleischmann BK, Förster I, Kastenmüller W, Kolanus W, Hölzel M, Gaffal E, Tüting T. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature. 2014;507:109–13.

    Article  CAS  PubMed  Google Scholar 

  33. Cheng L, Huang Z, Zhou W, Wu Q, Donnola S, Liu JK, Fang X, Sloan AE, Mao Y, Lathia JD, Min W, McLendon RE, Rich JN, Bao S. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell. 2013;153:139–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Liu AY, Ouyang G. Tumor angiogenesis: a new source of pericytes. Curr Biol. 2013;23:R565–8.

    Article  CAS  PubMed  Google Scholar 

  35. Lugassy C, Haroun RI, Brem H, Tyler BM, Jones RV, Fernandez PM, Patierno SR, Kleinman HK, Barnhill RL. Pericytic-like angiotropism of glioma and melanoma cells. Am J Dermatopathol. 2002;24:473–8.

    Article  PubMed  Google Scholar 

  36. Levy MJ, Gleeson FC, Zhang L. Endoscopic ultrasound fine-needle aspiration detection of extravascular migratory metastasis from a remotely located pancreatic cancer. Clin Gastroenterol Hepatol. 2009;7:246–8.

    Article  PubMed  Google Scholar 

  37. Lugassy C, Vernon SE, Warner JW, Le CQ, Manyak M, Patierno SR, Barnhill RL. Angiotropism of human prostate cancer cells: implications for extravascular migratory metastasis. BJU Int. 2005;95:1099–103.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The present work was supported by the UCLA Department of Pathology and Laboratory Medicine, the Translational Research Fund, the UCLA Daljit S. and Elaine Sarkaria Fellowship award, and the Orthopaedic Research and Education Foundation with funding provided by the Musculoskeletal Transplant Foundation. The authors thank the staff of UCLA Translational Pathology Core Laboratory and A.S. James for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron W. James.

Ethics declarations

Conflict of interest

None.

Additional information

Jia Shen and Swati Shrestha share equally in the work presented herein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Shrestha, S., Yen, YH. et al. Pericyte antigens in angiomyolipoma and PEComa family tumors. Med Oncol 32, 210 (2015). https://doi.org/10.1007/s12032-015-0659-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-015-0659-y

Keywords

Navigation