Skip to main content

Advertisement

Log in

Role of osteopontin in osteosarcoma

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The primary bone malignancy osteosarcoma (OS) is a painful health burden, of which treatment remains a challenging problem. Identification of specific tumor biomarkers may help to investigate and develop the novel effective therapeutic approaches that have specific molecular target for the treatment of patients with OS. Osteopontin (OPN), a phosphorylated glycoprotein, is involved in many biological processes, such as biomineralization, bone remodeling and immune responses and has recently been reported to be associated with OS pathogenesis. Interestingly, both of the up- and down-regulation of OPN are involved in OS. During OS development, genetic or epigenetic disruption causes reduced expression of RUNX2 and OPN through the up-regulation of notch signaling pathway, leading to the development of OS. On the other hand, during hypoxic condition, upregulation of OPN induces the glucose uptake into hypoxic OS cells which is responsible for the OS cell proliferation and drug resistance. Recent evidences show that targeting OPN might be an important tool in OS therapeutics. This review has focused on the association of abnormal OPN expression with the pathogenesis of OS, the efficiency of OPN as a diagnostic tool for OS and the therapeutic aspects of OS by targeting OPN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Miao J, Wu S, Peng Z, Tania M, Zhang C. MicroRNAs in osteosarcoma: diagnostic and therapeutic aspects. Tumour Biol. 2013;34(4):2093–8.

    Article  CAS  PubMed  Google Scholar 

  2. Kundu ZS. Classification, imaging, biopsy and staging of osteosarcoma. Indian J Orthop. 2014;48(3):238–46.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Ottaviani G, Jaffe N. The epidemiology of osteosarcoma. Cancer Treat Res. 2009;152:3–13.

    Article  PubMed  Google Scholar 

  4. Yang G, Yuan J, Li K. EMT transcription factors: implication in osteosarcoma. Med Oncol. 2013;30(4):697.

    Article  PubMed  Google Scholar 

  5. Mirabello L, Yu K, Berndt SI, Burdett L, Wang Z, Chowdhury S, Teshome K, Uzoka A, Hutchinson A, Grotmol T, Douglass C, Hayes RB, Hoover RN, Savage SA. National Osteosarcoma Etiology Study Group. A comprehensive candidate gene approach identifies genetic variation associated with osteosarcoma. BMC Cancer. 2011;11:209.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Calvert GT, Randall RL, Jones KB, Cannon-Albright L, Lessnick S, Schiffman JD. At-risk populations for osteosarcoma: the syndromes and beyond. Sarcoma. 2012;2012:152382.

    PubMed Central  PubMed  Google Scholar 

  7. Ferguson WS, Goorin AM. Current treatment of osteosarcoma. Cancer Invest. 2001;19(3):292–315.

    Article  CAS  PubMed  Google Scholar 

  8. Harting MT, Blakely ML. Management of osteosarcoma pulmonary metastases. Semin Pediatr Surg. 2006;15(1):25–9.

    Article  PubMed  Google Scholar 

  9. Cheng C, Gao S, Lei G. Association of osteopontin with osteoarthritis. Rheumatol Int. 2014;34(12):1627–31.

  10. Yamaga M, Tsuji K, Miyatake K, Yamada J, Abula K, Ju YJ, Sekiya I, Muneta T. Osteopontin level in synovial fluid is associated with the severity of joint pain and cartilage degradation after anterior cruciate ligament rupture. PLoS One. 2012;7(11):e49014.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Liu D, Vandahl BB, Birkelund S, Nielsen LB, Melsen B. Secretion of osteopontin from MG-63 cells under a physiological level of mechanical strain in vitro—a [35S] incorporation approach. Eur J Orthod. 2004;26(2):143–9.

    Article  CAS  PubMed  Google Scholar 

  12. Rodrigues LR, Teixeira JA, Schmitt FL, Paulsson M, Lindmark-Mänsson H. The role of osteopontin in tumor progression and metastasis in breast cancer. Cancer Epidemiol Biomarkers Prev. 2007;16(6):1087–97.

    Article  CAS  PubMed  Google Scholar 

  13. Jain S, Chakraborty G, Kundu GC. The crucial role of cyclooxygenase-2 in osteopontin-induced protein kinase C alpha/c-Src/IkappaB kinase alpha/beta-dependent prostate tumor progression and angiogenesis. Cancer Res. 2006;66(13):6638–48.

    Article  CAS  PubMed  Google Scholar 

  14. Karadag A, Ogbureke KU, Fedarko NS, Fisher LW. Bone sialoprotein, matrix metalloproteinase 2, and alpha(v)beta3 integrin in osteotropic cancer cell invasion. J Natl Cancer Inst. 2004;96(12):956–65.

    Article  CAS  PubMed  Google Scholar 

  15. Sodek J, Ganss B, McKee MD. Osteopontin. Crit Rev Oral Biol Med. 2000;11(3):279–303.

    Article  CAS  PubMed  Google Scholar 

  16. Wai PY, Kuo PC. The role of osteopontin in tumor metastasis. J Surg Res. 2004;121(2):228–41.

    Article  CAS  PubMed  Google Scholar 

  17. Weber GF, Lett GS, Haubein NC. Osteopontin is a marker for cancer aggressiveness and patient survival. Br J Cancer. 2010;103(6):861–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Mackie PS, Fisher JL, Zhou H, Choong PF. Bisphosphonates regulate cell growth and gene expression in the UMR 106-01 clonal rat osteosarcoma cell line. Br J Cancer. 2001;84(7):951–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Luo X, Chen J, Song WX, Tang N, Luo J, Deng ZL, Sharff KA, He G, Bi Y, He BC, Bennett E, Huang J, Kang Q, Jiang W, Su Y, Zhu GH, Yin H, He Y, Wang Y, Souris JS, Chen L, Zuo GW, Montag AG, Reid RR, Haydon RC, Luu HH, He TC. Osteogenic BMPs promote tumor growth of human osteosarcomas that harbor differentiation defects. Lab Invest. 2008;88(12):1264–77.

    Article  CAS  PubMed  Google Scholar 

  20. Kommagani R, Whitlatch A, Leonard MK, Kadakia MP. p73 is essential for vitamin D-mediated osteoblastic differentiation. Cell Death Differ. 2010;17(3):398–407.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Denhardt DT, Mistretta D, Chambers AF, Krishna S, Porter JF, Raghuram S, Rittling SR. Transcriptional regulation of osteopontin and the metastatic phenotype: evidence for a Ras-activated enhancer in the human OPN promoter. Clin Exp Metastasis. 2003;20(1):77–84.

    Article  CAS  PubMed  Google Scholar 

  22. Velupillai P, Sung CK, Tian Y, Dahl J, Carroll J, Bronson R, Benjamin T. Polyoma virus-induced osteosarcomas in inbred strains of mice: host determinants of metastasis. PLoS Pathog. 2010;6(1):e1000733.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Dalla-Torre CA, Yoshimoto M, Lee CH, Joshua AM, de Toledo SR, Petrilli AS, Andrade JA, Chilton-MacNeill S, Zielenska M, Squire JA. Effects of THBS3, SPARC and SPP1 expression on biological behavior and survival in patients with osteosarcoma. BMC Cancer. 2006;6:237.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Liu SJ, Hu GF, Liu YJ, Liu SG, Gao H, Zhang CS, Wei YY, Xue Y, Lao WD. Effect of human osteopontin on proliferation, transmigration and expression of MMP-2 and MMP-9 in osteosarcoma cells. Chin Med J (Engl). 2004;117(2):235–40.

    CAS  Google Scholar 

  25. Hsieh IS, Yang RS, Fu WM. Osteopontin upregulates the expression of glucose transporters in osteosarcoma cells. PLoS One. 2014;9(10):e109550.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Berge G, Pettersen S, Grotterød I, Bettum IJ, Boye K, Mælandsmo GM. Osteopontin—an important downstream effector of S100A4-mediated invasion and metastasis. Int J Cancer. 2011;129(4):780–90.

    Article  CAS  PubMed  Google Scholar 

  27. Fisher JL, Mackie PS, Howard ML, Zhou H, Choong PF. The expression of the urokinase plasminogen activator system in metastatic murine osteosarcoma: an in vivo mouse model. Clin Cancer Res. 2001;7(6):1654–60.

    CAS  PubMed  Google Scholar 

  28. Sulzbacher I, Birner P, Trieb K, Lang S, Chott A. Expression of osteopontin and vascular endothelial growth factor in benign and malignant bone tumors. Virchows Arch. 2002;441(4):345–9.

    Article  CAS  PubMed  Google Scholar 

  29. Liao Y, Li F, Hu X. Expression and clinical significance of OPN and COX-2 in osteosarcoma. Chin Ger J Clin Oncol. 2007;6(4):378–82.

    Article  Google Scholar 

  30. St-Arnaud R. The direct role of vitamin D on bone homeostasis. Arch Biochem Biophys. 2008;473(2):225–30.

    Article  CAS  PubMed  Google Scholar 

  31. Gill RK, Bell NH. Steroid receptor co-activator-1 mediates 1,25-dihydroxyvitamin D(3)-stimulated alkaline phosphatase in human osteosarcoma cells. Calcif Tissue Int. 2000;66(5):370–4.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang N, Ying MD, Wu YP, Zhou ZH, Ye ZM, Li H, Lin DS. Hyperoside, a flavonoid compound, inhibits proliferation and stimulates osteogenic differentiation of human osteosarcoma cells. PLoS One. 2014;9(7):e98973.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Suzuki K, Zhu B, Rittling SR, Denhardt DT, Goldberg HA, McCulloch CA, Sodek J. Colocalization of intracellular osteopontin with CD44 is associated with migration, cell fusion, and resorption in osteoclasts. J Bone Miner Res. 2002;17(8):1486–97.

    Article  CAS  PubMed  Google Scholar 

  34. Mortus JR, Zhang Y, Hughes DP. Developmental pathways hijacked by osteosarcoma. Adv Exp Med Biol. 2014;804:93–118.

    Article  PubMed  Google Scholar 

  35. Tang N, Song WX, Luo J, Haydon RC, He TC. Osteosarcoma development and stem cell differentiation. Clin Orthop Relat Res. 2008;466(9):2114–30.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Engin F, Bertin T, Ma O, Jiang MM, Wang L, Sutton RE, Donehower LA, Lee B. Notch signaling contributes to the pathogenesis of human osteosarcomas. Hum Mol Genet. 2009;18(8):1464–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Boye K, Grotterød I, Aasheim HC, Hovig E, Maelandsmo GM. Activation of NF-kappaB by extracellular S100A4: analysis of signal transduction mechanisms and identification of target genes. Int J Cancer. 2008;123(6):1301–10.

    Article  CAS  PubMed  Google Scholar 

  38. Rud AK, Lund-Iversen M, Berge G, Brustugun OT, Solberg SK, Mælandsmo GM, Boye K. Expression of S100A4, ephrin-A1 and osteopontin in non-small cell lung cancer. BMC Cancer. 2012;12:333.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Longhi A, Errani C, De Paolis M, Mercuri M, Bacci G. Primary bone osteosarcoma in the pediatric age: state of the art. Cancer Treat Rev. 2006;32(6):423–36.

    Article  PubMed  Google Scholar 

  40. Inoue T, Hagiyama M, Enoki E, Sakurai MA, Tan A, Wakayama T, Iseki S, Murakami Y, Fukuda K, Hamanishi C, Ito A. Cell adhesion molecule 1 is a new osteoblastic cell adhesion molecule and a diagnostic marker for osteosarcoma. Life Sci. 2013;92(1):91–9.

    Article  CAS  PubMed  Google Scholar 

  41. Luo P, Yang X, Ying M, Chaudhry P, Wang A, Shimada H, May WA, Adams GB, Mock D, Triche TJ, He Q, Wu L. Retinoid-suppressed phosphorylation of RARalpha mediates the differentiation pathway of osteosarcoma cells. Oncogene. 2010;29(19):2772–83.

    Article  CAS  PubMed  Google Scholar 

  42. Finch JL, Dusso AS, Pavlopoulos T, Slatopolsky EA. Relative potencies of 1,25-(OH)(2)D(3) and 19-Nor-1,25-(OH)(2)D(2) on inducing differentiation and markers of bone formation in MG-63 cells. J Am Soc Nephrol. 2001;12(7):1468–74.

    CAS  PubMed  Google Scholar 

  43. De Blasio A, Musmeci MT, Giuliano M, Lauricella M, Emanuele S, D’Anneo A, Vassallo B, Tesoriere G, Vento R. The effect of 3-aminobenzamide, inhibitor of poly (ADP-ribose) polymerase, on human osteosarcoma cells. Int J Oncol. 2003;23(6):1521–8.

    PubMed  Google Scholar 

  44. De Blasio A, Messina C, Santulli A, Mangano V, Di Leonardo E, D’Anneo A, Tesoriere G, Vento R. Differentiative pathway activated by 3-aminobenzamide, an inhibitor of PARP, in human osteosarcoma MG-63 cells. FEBS Lett. 2005;579(3):615–20.

    Article  PubMed  Google Scholar 

  45. Bandopadhyay M, Bulbule A, Butti R, Chakraborty G, Ghorpade P, Ghosh P, Gorain M, Kale S, Kumar D, Kumar S, Totakura KV, Roy G, Sharma P, Shetti D, Soundararajan G, Thorat D, Tomar D, Nalukurthi R, Raja R, Mishra R, Yadav AS, Kundu GC. Osteopontin as a therapeutic target for cancer. Expert Opin Ther Targets. 2014;18(8):883–95.

    Article  CAS  PubMed  Google Scholar 

  46. Dass CR, Choong PF. Zoledronic acid inhibits osteosarcoma growth in an orthotopic model. Mol Cancer Ther. 2007;6(12 Pt 1):3263–70.

    Article  CAS  PubMed  Google Scholar 

  47. Tsao R, Yang R, Young JC, Zhu H. Polyphenolic profiles in eight apple cultivars using high-performance liquid chromatography (HPLC). J Agric Food Chem. 2003;51(21):6347–53.

    Article  CAS  PubMed  Google Scholar 

  48. Sabzevari O, Galati G, Moridani MY, Siraki A, O’Brien PJ. Molecular cytotoxic mechanisms of anticancer hydroxychalcones. Chem Biol Interact. 2004;148(1–2):57–67.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 81402224), the Provincial Science Foundation of Hunan (No. 2015JJ3139), the Scientific Research Project of Science and Technology Bureau of Hunan Province (2012FJ6001), the Scientific Research Project of Science and Technology Office of Changsha City (K1203040-31), the Scientific Research Project of Health and Family Planning Commission of Hunan Province (B2014-12) and the College student’s Innovation and Entrepreneurship Project of Central South University (DL14505).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-hua Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Ys., Deng, Zh., Zeng, C. et al. Role of osteopontin in osteosarcoma. Med Oncol 32, 449 (2015). https://doi.org/10.1007/s12032-014-0449-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-014-0449-y

Keywords

Navigation