Skip to main content

Advertisement

Log in

Urinary cell-free microRNA-106b as a novel biomarker for detection of bladder cancer

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Cell-free microRNAs (miRNAs) stably and abundantly exist in body fluids and emerging evidence suggests cell-free miRNAs as a novel class of noninvasive disease biomarkers. In this study, we hypothesized that the quantitative detection of the oncogenic miR-106b-25 cluster in urine could be a useful clinical biomarker for bladder cancer (BCa). Three members of the miR-106b-25 cluster (miR-106b, miR-93 and miR-25) were quantified by real-time RT-PCR in urine supernatant of 112 BCa patients and 78 age-matched controls. In our study, the urinary levels of miR-106b were significantly higher in BCa patients than controls (P < 0.001). No significant difference was observed in the urinary levels of miR-93 and miR-25 between two groups. Furthermore, the levels of urinary miR-106b were significantly reduced in postoperative samples compared with the levels in the preoperative samples (P = 0.007). With respect of clinicopathological characteristics, the level of urinary miR-106b was associated with advanced tumor stage. Receiver operating characteristic (ROC) analysis revealed that urinary miR-106b had considerable diagnostic accuracy, yielding an AUC (the areas under the ROC curve) of 0.802 with 76.8 % sensitivity and 72.4 % specificity in differentiating BCa from controls. In conclusion, our data indicate that urinary cell-free miR-106b might provide new complementary tumor biomarkers for BCa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. doi:10.3322/caac.20107.

    Article  PubMed  Google Scholar 

  2. Kirkali Z, Chan T, Manoharan M, Algaba F, Busch C, Cheng L, et al. Bladder cancer: epidemiology, staging and grading, and diagnosis. Urology. 2005;66(6 Suppl 1):4–34. doi:10.1016/j.urology.2005.07.062.

    Article  PubMed  Google Scholar 

  3. Prout GR Jr. Barton BA, Griffin PP, Friedell GH. Treated history of noninvasive grade 1 transitional cell carcinoma. The National Bladder Cancer Group. J Urol. 1992;148(5):1413–9.

    PubMed  Google Scholar 

  4. Pagano F, Bassi P, Galetti TP, Meneghini A, Milani C, Artibani W, et al. Results of contemporary radical cystectomy for invasive bladder cancer: a clinicopathological study with an emphasis on the inadequacy of the tumor, nodes and metastases classification. J Urol. 1991;145(1):45–50.

    PubMed  CAS  Google Scholar 

  5. Babjuk M, Oosterlinck W, Sylvester R, Kaasinen E, Bohle A, Palou-Redorta J. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder. Eur Urol. 2008;54(2):303–14. doi:10.1016/j.eururo.2008.04.051.

    Article  PubMed  Google Scholar 

  6. Stenzl A, Cowan NC, De Santis M, Jakse G, Kuczyk MA, Merseburger AS, et al. The updated EAU guidelines on muscle-invasive and metastatic bladder cancer. Eur Urol. 2009;55(4):815–25. doi:10.1016/j.eururo.2009.01.002.

    Article  PubMed  Google Scholar 

  7. van Rhijn BW. Considerations on the use of urine markers for bladder cancer. Eur Urol. 2008;53(5):880–1. doi:10.1016/j.eururo.2008.01.043.

    Article  PubMed  Google Scholar 

  8. Vrooman OP, Witjes JA. Urinary markers in bladder cancer. Eur Urol. 2008;53(5):909–16. doi:10.1016/j.eururo.2007.12.006.

    Article  PubMed  Google Scholar 

  9. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  PubMed  CAS  Google Scholar 

  10. Rosenfeld N, Aharonov R, Meiri E, Rosenwald S, Spector Y, Zepeniuk M, et al. MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol. 2008;26(4):462–9. doi:10.1038/nbt1392.

    Article  PubMed  CAS  Google Scholar 

  11. Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA. MicroRNAs in body fluids–the mix of hormones and biomarkers. Nat Rev Clin Oncol. 2011;8(8):467–77. doi:10.1038/nrclinonc.2011.76.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Etheridge A, Lee I, Hood L, Galas D, Wang K. Extracellular microRNA: a new source of biomarkers. Mutat Res. 2011;717(1–2):85–90. doi:10.1016/j.mrfmmm.2011.03.004.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Gilad S, Meiri E, Yogev Y, Benjamin S, Lebanony D, Yerushalmi N, et al. Serum microRNAs are promising novel biomarkers. PLoS One. 2008;3(9):e3148. doi:10.1371/journal.pone.0003148.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang G, Tam LS, Li EK, Kwan BC, Chow KM, Luk CC, et al. Serum and urinary free microRNA level in patients with systemic lupus erythematosus. Lupus. 2011;20(5):493–500. doi:10.1177/0961203310389841.

    Article  PubMed  CAS  Google Scholar 

  15. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56(11):1733–41. doi:10.1373/clinchem.2010.147405.

    Article  PubMed  CAS  Google Scholar 

  16. Hasselmann DO, Rappl G, Tilgen W, Reinhold U. Extracellular tyrosinase mRNA within apoptotic bodies is protected from degradation in human serum. Clin Chem. 2001;47(8):1488–9.

    PubMed  CAS  Google Scholar 

  17. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem. 2010;285(23):17442–52. doi:10.1074/jbc.M110.107821.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA. 2011;108(12):5003–8. doi:10.1073/pnas.1019055108.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13(4):423–33. doi:10.1038/ncb2210.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, et al. A microRNA polycistron as a potential human oncogene. Nature. 2005;435(7043):828–33. doi:10.1038/nature03552.

    Article  PubMed  CAS  Google Scholar 

  21. Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I, et al. E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell. 2008;13(3):272–86. doi:10.1016/j.ccr.2008.02.013.

    Article  PubMed  CAS  Google Scholar 

  22. Kan T, Sato F, Ito T, Matsumura N, David S, Cheng Y, et al. The miR-106b-25 polycistron, activated by genomic amplification, functions as an oncogene by suppressing p21 and Bim. Gastroenterology. 2009;136(5):1689–700.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Hudson RS, Yi M, Esposito D, Glynn SA, Starks AM, Yang Y, et al. MicroRNA-106b-25 cluster expression is associated with early disease recurrence and targets caspase-7 and focal adhesion in human prostate cancer. Oncogene. 2013;32(35):4139–47. doi:10.1038/onc.2012.424.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Liu Y, Zhang Y, Wen J, Liu L, Zhai X, Liu J, et al. A genetic variant in the promoter region of miR-106b-25 cluster and risk of HBV infection and hepatocellular carcinoma. PLoS One. 2012;7(2):e32230. doi:10.1371/journal.pone.0032230.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Han Y, Chen J, Zhao X, Liang C, Wang Y, Sun L, et al. MicroRNA expression signatures of bladder cancer revealed by deep sequencing. PLoS One. 2011;6(3):e18286. doi:10.1371/journal.pone.0018286.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Li X, Chen J, Hu X, Huang Y, Li Z, Zhou L, et al. Comparative mRNA and microRNA expression profiling of three genitourinary cancers reveals common hallmarks and cancer-specific molecular events. PLoS One. 2011;6(7):e22570. doi:10.1371/journal.pone.0022570.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Lin T, Dong W, Huang J, Pan Q, Fan X, Zhang C, et al. MicroRNA-143 as a tumor suppressor for bladder cancer. J Urol. 2009;181(3):1372–80. doi:10.1016/j.juro.2008.10.149.

    Article  PubMed  CAS  Google Scholar 

  28. Kim YK, Yu J, Han TS, Park SY, Namkoong B, Kim DH, et al. Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res. 2009;37(5):1672–81. doi:10.1093/nar/gkp002.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Petrocca F, Vecchione A, Croce CM. Emerging role of miR-106b-25/miR-17-92 clusters in the control of transforming growth factor beta signaling. Cancer Res. 2008;68(20):8191–4. doi:10.1158/0008-5472.can-08-1768.

    Article  PubMed  CAS  Google Scholar 

  30. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8. doi:10.1006/meth.2001.1262.

    Article  PubMed  CAS  Google Scholar 

  31. Yun SJ, Jeong P, Kim WT, Kim TH, Lee YS, Song PH, et al. Cell-free microRNAs in urine as diagnostic and prognostic biomarkers of bladder cancer. Int J Oncol. 2012;41(5):1871–8. doi:10.3892/ijo.2012.1622.

    PubMed  CAS  Google Scholar 

  32. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 2008;105(30):10513–8. doi:10.1073/pnas.0804549105.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Luo Y, Wang C, Chen X, Zhong T, Cai X, Chen S, et al. Increased serum and urinary microRNAs in children with idiopathic nephrotic syndrome. Clin Chem. 2013;59(4):658–66. doi:10.1373/clinchem.2012.195297.

    Article  PubMed  CAS  Google Scholar 

  34. Argyropoulos C, Wang K, McClarty S, Huang D, Bernardo J, Ellis D, et al. Urinary microRNA profiling in the nephropathy of type 1 diabetes. PLoS One. 2013;8(1):e54662. doi:10.1371/journal.pone.0054662.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Yamada Y, Enokida H, Kojima S, Kawakami K, Chiyomaru T, Tatarano S, et al. MiR-96 and miR-183 detection in urine serve as potential tumor markers of urothelial carcinoma: correlation with stage and grade, and comparison with urinary cytology. Cancer Sci. 2011;102(3):522–9. doi:10.1111/j.1349-7006.2010.01816.x.

    Article  PubMed  CAS  Google Scholar 

  36. Miah S, Dudziec E, Drayton RM, Zlotta AR, Morgan SL, Rosario DJ, et al. An evaluation of urinary microRNA reveals a high sensitivity for bladder cancer. Br J Cancer. 2012;107(1):123–8. doi:10.1038/bjc.2012.221.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Wang G, Tam LS, Kwan BC, Li EK, Chow KM, Luk CC, et al. Expression of miR-146a and miR-155 in the urinary sediment of systemic lupus erythematosus. Clin Rheumatol. 2012;31(3):435–40. doi:10.1007/s10067-011-1857-4.

    Article  PubMed  Google Scholar 

  38. Wang G, Tam LS, Li EK, Kwan BC, Chow KM, Luk CC, et al. Serum and urinary cell-free MiR-146a and MiR-155 in patients with systemic lupus erythematosus. J Rheumatol. 2010;37(12):2516–22. doi:10.3899/jrheum.100308.

    Article  PubMed  CAS  Google Scholar 

  39. Hamilton AJ. MicroRNA in erythrocytes. Biochem Soc Trans. 2010;38(Pt 1):229–31. doi:10.1042/bst0380229.

    Article  PubMed  CAS  Google Scholar 

  40. Smith AL, Iwanaga R, Drasin DJ, Micalizzi DS, Vartuli RL, Tan AC, et al. The miR-106b-25 cluster targets Smad7, activates TGF-beta signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer. Oncogene. 2012;31(50):5162–71. doi:10.1038/onc.2012.11.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Shen G, Jia H, Tai Q, Li Y, Chen D. miR-106b downregulates adenomatous polyposis coli and promotes cell proliferation in human hepatocellular carcinoma. Carcinogenesis. 2013;34(1):211–9. doi:10.1093/carcin/bgs320.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Nos. 81271916; 81301506); Shandong Province Natural Science Foundation of China (ZR2013HQ063) and National Key Clinical Medical Specialties Foundation.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanxin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Zhang, X., Yang, Y. et al. Urinary cell-free microRNA-106b as a novel biomarker for detection of bladder cancer. Med Oncol 31, 197 (2014). https://doi.org/10.1007/s12032-014-0197-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-014-0197-z

Keywords

Navigation