Skip to main content

Advertisement

Log in

miR-200c modulates ovarian cancer cell metastasis potential by targeting zinc finger E-box-binding homeobox 2 (ZEB2) expression

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

This study was to investigate the effect of miR-200c on regulation of ovarian cancer cell metastasis potential and explore the underlying molecular events. qRT-PCR was used to analyze the level of miR-200c expression in 48 ovarian cancer and 30 normal ovarian tissue samples. pre-miR-200c was used to manipulate miR-200c expression in ovarian cancer cells for detection of changed phenotypes of tumor cells. Bioinformatics analysis was then used to predict target genes of miR-200c and GO and pathway analyses drew the miR-200c-related gene network. Luciferase reporter assay confirmed the target of miR-200c as ZEB2. Western blot was used to detect gene expressions in ovarian cancer cells. Level of miR-200c expression was much higher in ovarian cancer than in normal ovarian tissues, and miR-200c expression was inversely associated with advanced clinical stage and lymph node metastasis of ovarian cancer (p < 0.01). The database search predicted 186 miR-200c-targeting genes, and GO analysis showed that functions of these target genes were enriched in the protein binding and other biological processes. Furthermore, miR-200c expression inhibited ovarian cancer cell ES-2 migration and invasion capacity by suppression of ZEB2 expression (p < 0.01). Overexpression of miR-200c regulated E-cadherin and vimentin expression in ovarian cancer cells. This study demonstrated high miR-200c expression in ovarian cancer tissues and ZEB2 as a targeting gene of miR-200c, which mediated the effects of miR-200c on regulation of ovarian cancer cell migration and invasion capacity and epithelial-to-mesenchymal transition. Thus, targeting of miR-200c or ZEB2 may serve as a potential therapeutic strategy for control of ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ. Cancer statistics, 2008. CA Cancer J Clin. 2008;58:71–96.

    Article  PubMed  Google Scholar 

  2. Nakayama K, Nakayama N, Katagiri H, Miyazaki K. Mechanisms of ovarian cancer metastasis: biochemical pathways. Int J Mol Sci. 2012;13:11705–17.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Sourbier C. Ovarian cancer: emerging molecular-targeted therapies. Biologics. 2012;6:147–54.

    PubMed Central  PubMed  Google Scholar 

  4. Gilabert-Estelles J, Braza-Boils A, Ramon LA, Zorio E, Medina P, Espana F, Estelles A. Role of microRNAs in gynecological pathology. Curr Med Chem. 2012;19:2406–13.

    Article  CAS  PubMed  Google Scholar 

  5. Diaz-Lopez A, Moreno-Bueno G, Cano A. Role of microRNA in epithelial to mesenchymal transition and metastasis and clinical perspectives. Cancer Manag Res. 2014;6:205–16.

    PubMed Central  PubMed  Google Scholar 

  6. Gallo D, Ferlini C, Scambia G. The epithelial-mesenchymal transition and the estrogen-signaling in ovarian cancer. Curr Drug Targets. 2010;11:474–81.

    Article  CAS  PubMed  Google Scholar 

  7. Vergara D, Merlot B, Lucot JP, Collinet P, Vinatier D, Fournier I, Salzet M. Epithelial–mesenchymal transition in ovarian cancer. Cancer Lett. 2010;291:59–66.

    Article  CAS  PubMed  Google Scholar 

  8. Korpal M, Lee ES, Hu G, Kang Y. The miR-200 family inhibits epithelial–mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 2008;283:14910–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Kurahara H, Takao S, Maemura K, Mataki Y, Kuwahata T, Maeda K, et al. Epithelial–mesenchymal transition and mesenchymal–epithelial transition via regulation of ZEB-1 and ZEB-2 expression in pancreatic cancer. J Surg Oncol. 2012;105:655–61.

    Article  CAS  PubMed  Google Scholar 

  10. Zheng H, Liu JY, Song FJ, Chen KX. Advances in circulating microRNAs as diagnostic and prognostic markers for ovarian cancer. Cancer Biol Med. 2013;10:123–30.

    PubMed Central  PubMed  Google Scholar 

  11. Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7:415–28.

    Article  CAS  PubMed  Google Scholar 

  12. Yang J, Weinberg RA. Epithelial–mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008;14:818–29.

    Article  CAS  PubMed  Google Scholar 

  13. Nam EJ, Yoon H, Kim SW, Kim H, Kim YT, Kim JH, et al. MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res. 2008;14:2690–5.

    Article  CAS  PubMed  Google Scholar 

  14. Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 2008;9:582–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Paterson EL, Kolesnikoff N, Gregory PA, Bert AG, Khew-Goodall Y, Goodall GJ. The microRNA-200 family regulates epithelial to mesenchymal transition. Sci World J. 2008;8:901–4.

    Article  CAS  Google Scholar 

  16. Schoof CR, Botelho EL, Izzotti A, dos Reis Vasques L. MicroRNAs in cancer treatment and prognosis. Am J Cancer Res. 2012;2:414–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Kuhlmann JD, Rasch J, Wimberger P, Kasimir-Bauer S. microRNA and the pathogenesis of ovarian cancer—a new horizon for molecular diagnostics and treatment? Clin Chem Lab Med. 2012;50:601–15.

    CAS  PubMed  Google Scholar 

  18. Nishimura M, Jung EJ, Shah MY, Lu C, Spizzo R, Shimizu M, et al. Therapeutic synergy between microRNA and siRNA in ovarian cancer treatment. Cancer Discov. 2013;3:1302–15.

    Article  CAS  PubMed  Google Scholar 

  19. van Jaarsveld MT, Helleman J, Berns EM, Wiemer EA. MicroRNAs in ovarian cancer biology and therapy resistance. Int J Biochem Cell Biol. 2010;42:1282–90.

    Article  PubMed  Google Scholar 

  20. S-dL Lin-xia Li, Yang Yi-xia, Wan Xiao-ping. Changes of miR-200c expression in ovarian cancer and its clinical significance. Acad J Sec Mil Med Univ. 2011;32:612–6.

    Google Scholar 

  21. Bendoraite A, Knouf EC, Garg KS, Parkin RK, Kroh EM, O’Briant KC, et al. Regulation of miR-200 family microRNAs and ZEB transcription factors in ovarian cancer: evidence supporting a mesothelial-to-epithelial transition. Gynecol Oncol. 2010;116:117–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Hu X, Macdonald DM, Huettner PC, Feng Z, El Naqa IM, Schwarz JK, et al. A miR-200 microRNA cluster as prognostic marker in advanced ovarian cancer. Gynecol Oncol. 2009;114:457–64.

    Article  CAS  PubMed  Google Scholar 

  23. Howe EN, Cochrane DR, Richer JK. The miR-200 and miR-221/222 microRNA families: opposing effects on epithelial identity. J Mammary Gland Biol Neoplasia. 2012;17:65–77.

    Article  PubMed  Google Scholar 

  24. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10:593–601.

    Article  CAS  PubMed  Google Scholar 

  25. Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22:894–907.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Brabletz S, Brabletz T. The ZEB/miR-200 feedback loop—a motor of cellular plasticity in development and cancer? EMBO Rep. 2010;11:670–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Mongroo PS, Rustgi AK. The role of the miR-200 family in epithelial-mesenchymal transition. Cancer Biol Ther. 2010;10:219–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Valastyan S. Roles of microRNAs and other non-coding RNAs in breast cancer metastasis. J Mammary Gland Biol Neoplasia. 2012;17:23–32.

    Article  PubMed  Google Scholar 

  29. Ho CS, Yap SH, Phuah NH, In LL, Hasima N. MicroRNAs associated with tumour migration, invasion and angiogenic properties in A549 and SK-Lu1 human lung adenocarcinoma cells. Lung Cancer. 2014;83:154–62.

    Article  PubMed  Google Scholar 

  30. Iorio MV, Croce CM. MicroRNA profiling in ovarian cancer. Methods Mol Biol. 2013;1049:187–97.

    Article  PubMed  Google Scholar 

  31. Gheldof A, Hulpiau P, van Roy F, De Craene B, Berx G. Evolutionary functional analysis and molecular regulation of the ZEB transcription factors. Cell Mol Life Sci. 2012;69:2527–41.

    Article  CAS  PubMed  Google Scholar 

  32. Hurteau GJ, Carlson JA, Spivack SD, Brock GJ. Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Res. 2007;67:7972–6.

    Article  CAS  PubMed  Google Scholar 

  33. Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF, Goodall GJ. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial–mesenchymal transition. Cancer Res. 2008;68:7846–54.

    Article  CAS  PubMed  Google Scholar 

  34. Yu X, Zhang X, Bi T, Ding Y, Zhao J, Wang C, et al. MiRNA expression signature for potentially predicting the prognosis of ovarian serous carcinoma. Tumour Biol. 2013;34:3501–8.

    Article  CAS  PubMed  Google Scholar 

  35. Chen J, Tian W, Cai H, He H, Deng Y. Down-regulation of microRNA-200c is associated with drug resistance in human breast cancer. Med Oncol. 2012;29:2527–34.

    Article  CAS  PubMed  Google Scholar 

  36. Kopp F, Oak PS, Wagner E, Roidl A. miR-200c sensitizes breast cancer cells to doxorubicin treatment by decreasing TrkB and Bmi1 expression. PLoS One. 2012;7:e50469.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by Grants from National Natural Science Foundation of China (81001163), Liaoning Education Department for Scientific and Technological Research Project funds (2009A781), and Shenyang Science and Technology Project funds (F13-221-9-46).

Conflict of interest

The authors declared that there was no conflict of interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-lan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Ym., Shang, C., Ou, Yl. et al. miR-200c modulates ovarian cancer cell metastasis potential by targeting zinc finger E-box-binding homeobox 2 (ZEB2) expression. Med Oncol 31, 134 (2014). https://doi.org/10.1007/s12032-014-0134-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-014-0134-1

Keywords

Navigation