Skip to main content

Advertisement

Log in

Ketone Body Rescued Seizure Behavior of LRP1 Deficiency in Drosophila by Modulating Glutamate Transport

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

A Correction to this article was published on 26 December 2022

This article has been updated

Abstract

LRP1, the low-density lipoprotein receptor 1, would be a novel candidate gene of epilepsy according to our bioinformatic results and the animal study. In this study, we explored the role of LRP1 in epilepsy and whether beta-hydroxybutyrate, the principal ketone body of the ketogenic diet, can treat epilepsy caused by LRP1 deficiency in drosophila. UAS/GAL4 system was used to establish different genotype models. Flies were given standard, high-sucrose, and ketone body food randomly. The bang-sensitive test was performed on flies and seizure-like behavior was assessed. In morphologic experiments, we found that LRP1 deficiency caused partial loss of the ellipsoidal body and partial destruction of the fan-shaped body. Whole-body and glia LRP1 defect flies had a higher seizure rate compared to the control group. Ketone body decreased the seizure rate in behavior test in all LRP1 defect flies, compared to standard and high sucrose diet. Overexpression of glutamate transporter gene Eaat1 could mimic the ketone body effect on LRP1 deficiency flies. This study demonstrated that LRP1 defect globally or in glial cells or neurons could induce epilepsy in drosophila. The ketone body efficaciously rescued epilepsy caused by LRP1 knockdown. The results support screening for LRP1 mutations as discriminating conduct for individuals who require clinical attention and further clarify the mechanism of the ketogenic diet in epilepsy, which could help epilepsy patients make a precise treatment case by case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Raw data were generated at Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University. Derived data supporting the findings of this study are available from the corresponding author on request.

Change history

References

  • Bough KJ, Wetherington J, Hassel B, Pare JF, Gawryluk JW, Greene JG, Shaw R, Smith Y, Geiger JD, Dingledine RJ (2006) Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol 60(2):223–235

    Article  CAS  Google Scholar 

  • Bres EE, Safina D, Muller J, Bedner P, Yang H, Helluy X, Shchyglo O, Jansen S, Mark MD, Esser A, Steinhauser C, Herlitze S, Pietrzik CU, Sirko S, Manahan-Vaughan D, Faissner A (2020) Lipoprotein receptor loss in forebrain radial glia results in neurological deficits and severe seizures. Glia 68(12):2517–2549

    Article  Google Scholar 

  • Chung HL, Mao X, Wang H, Park YJ, Marcogliese PC, Rosenfeld JA, Burrage LC, Liu PF, Murdock DR, Yamamoto S, Wangler MF, Chao HT, Long HY, Feng L, Bacino CA, Bellen HJ, Xiao B (2020) De novo variants in CDK19 are associated with a syndrome involving intellectual disability and epileptic encephalopathy. Am J Hum Genet 106(5):717–725

    Article  CAS  Google Scholar 

  • D'Andrea Meira I, Romão TT, Pires do Prado HJ, Krüger LT, Pires MEP, da Conceição PO (2019) Ketogenic diet and epilepsy: What we know so far. Front Neurosci 13:5. https://doi.org/10.3389/fnins.2019.00005. PMID: 30760973; PMCID: PMC6361831

  • Devinsky O, Vezzani A, O’Brien TJ, Jette N, Scheffer IE, de Curtis M, Perucca P (2018) Epilepsy Nat Rev Dis Primers 4:18024

    Article  Google Scholar 

  • DeVivo DC, Leckie MP, Ferrendelli JS, McDougal DB Jr (1978) Chronic ketosis and cerebral metabolism. Ann Neurol 3(4):331–337

    Article  CAS  Google Scholar 

  • Echeveste R, Gros C (2015) Two-trace model for spike-timing-dependent synaptic plasticity. Neural Comput 27(3):672–698

    Article  Google Scholar 

  • Ferrere G, Tidjani Alou M, Liu P, Goubet AG, Fidelle M, Kepp O, Durand S, Iebba V, Fluckiger A, Daillère R, Thelemaque C, Grajeda-Iglesias C, Alves Costa Silva C, Aprahamian F, Lefevre D, Zhao L, Ryffel B, Colomba E, Arnedos M, Drubay D, Rauber C, Raoult D, Asnicar F, Spector T, Segata N, Derosa L, Kroemer G, Zitvogel L (2021) Ketogenic diet and ketone bodies enhance the anticancer effects of PD-1 blockade. JCI Insight 6(2):e145207. https://doi.org/10.1172/jci.insight.145207. PMID: 33320838; PMCID: PMC7934884

  • Fisher RS, van Emde Boas W, Blume W, Elger C, Genton P, Lee P, Engel J Jr (2005) Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46(4):470–472

    Article  Google Scholar 

  • Fogle KJ, Hertzler JI, Shon JH, Palladino MJ (2016) The ATP-sensitive K channel is seizure protective and required for effective dietary therapy in a model of mitochondrial encephalomyopathy. J Neurogenet 30(3–4):247–258

    Article  CAS  Google Scholar 

  • Ganetzky B, Wu CF (1982) Indirect suppression involving behavioral mutants with altered nerve excitability in DROSOPHILA MELANOGASTER. Genetics 100(4):597–614

    Article  CAS  Google Scholar 

  • Greene AE, Todorova MT, McGowan R, Seyfried TN (2001) Caloric restriction inhibits seizure susceptibility in epileptic EL mice by reducing blood glucose. Epilepsia 42(11):1371–1378

    Article  CAS  Google Scholar 

  • Greene AE, Todorova MT, Seyfried TN (2003) Perspectives on the metabolic management of epilepsy through dietary reduction of glucose and elevation of ketone bodies. J Neurochem 86(3):529–537

    Article  CAS  Google Scholar 

  • Hernandez-Garzon E, Fernandez AM, Perez-Alvarez A, Genis L, Bascunana P, Fernandez de la Rosa R, Delgado M, Angel Pozo M, Moreno E, McCormick PJ, Santi A, Trueba-Saiz A, Garcia-Caceres C, Tschop MH, Araque A, Martin ED, Torres Aleman I (2016) The insulin-like growth factor I receptor regulates glucose transport by astrocytes. Glia 64(11):1962–1971

    Article  Google Scholar 

  • Huang CW, Hsieh YJ, Pai MC, Tsai JJ, Huang CC (2005) Nonketotic hyperglycemia-related epilepsia partialis continua with ictal unilateral parietal hyperperfusion. Epilepsia 46(11):1843–1844

    Article  Google Scholar 

  • Kraeuter AK, Guest PC, Sarnyai Z (2020) Protocol for the use of the ketogenic diet in preclinical and clinical practice. Methods Mol Biol 2138:83–98

    Article  CAS  Google Scholar 

  • Li D, Wang Q, Gong NN, Kurolap A, Feldman HB, Boy N, Brugger M, Grand K, McWalter K, Guillen Sacoto MJ, Wakeling E, Hurst J, March ME, Bhoj EJ, Nowaczyk MJM, Gonzaga-Jauregui C, Mathew M, Dava-Wala A, Siemon A, Bartholomew D, Huang Y, Lee H, Martinez-Agosto JA, Schwaibold EMC, Brunet T, Choukair D, Pais LS, White SM, Christodoulou J, Brown D, Lindstrom K, Grebe T, Tiosano D, Kayser MS, Tan TY, Deardorff MA, Song Y, Hakonarson H (2021) Pathogenic variants in SMARCA5, a chromatin remodeler, cause a range of syndromic neurodevelopmental features. Sci Adv 7(20):eabf2066. https://doi.org/10.1126/sciadv.abf2066. PMID: 33980485; PMCID: PMC8115915

  • Li J, Han S, Li H, Udeshi ND, Svinkina T, Mani DR, Xu C, Guajardo R, Xie Q, Li T, Luginbuhl DJ, Wu B, McLaughlin CN, Xie A, Kaewsapsak P, Quake SR, Carr SA, Ting AY, Luo L (2020) Cell-surface proteomic profiling in the fly brain uncovers wiring regulators. Cell 180(2):373-386-e315

    Article  CAS  Google Scholar 

  • Liu CC, Hu J, Tsai CW, Yue M, Melrose HL, Kanekiyo T, Bu G (2015) Neuronal LRP1 regulates glucose metabolism and insulin signaling in the brain. J Neurosci 35(14):5851–5859

    Article  CAS  Google Scholar 

  • May P, Rohlmann A, Bock HH, Zurhove K, Marth JD, Schomburg ED, Noebels JL, Beffert U, Sweatt JD, Weeber EJ, Herz J (2004) Neuronal LRP1 functionally associates with postsynaptic proteins and is required for normal motor function in mice. Mol Cell Biol 24(20):8872–8883

    Article  CAS  Google Scholar 

  • Milikovsky DZ, Ofer J, Senatorov VV Jr, Friedman AR, Prager O, Sheintuch L, Elazari N, Veksler R, Zelig D, Weissberg I, Bar-Klein G, Swissa E, Hanael E, Ben-Arie G, Schefenbauer O, Kamintsky L, Saar-Ashkenazy R, Shelef I, Shamir MH, Goldberg I, Glik A, Benninger F, Kaufer D, Friedman A (2019) Paroxysmal slow cortical activity in Alzheimer's disease and epilepsy is associated with blood-brain barrier dysfunction. Sci Transl Med 11(521):eaaw8954. https://doi.org/10.1126/scitranslmed.aaw8954. PMID: 31801888

  • Ni JQ, Zhou R, Czech B, Liu LP, Holderbaum L, Yang-Zhou D, Shim HS, Tao R, Handler D, Karpowicz P, Binari R, Booker M, Brennecke J, Perkins LA, Hannon GJ, Perrimon N (2011) A genome-scale shRNA resource for transgenic RNAi in Drosophila. Nat Methods 8(5):405–407

    Article  CAS  Google Scholar 

  • Nikolakopoulou AM, Wang Y, Ma Q, Sagare AP, Montagne A, Huuskonen MT, Rege SV, Kisler K, Dai Z, Körbelin J, Herz J, Zhao Z, Zlokovic BV (2021) Endothelial LRP1 protects against neurodegeneration by blocking cyclophilin A. J Exp Med 218(4):e20202207. https://doi.org/10.1084/jem.20202207. PMID: 33533918; PMCID: PMC7863706

  • Pardridge WM (1983) Brain metabolism: a perspective from the blood-brain barrier. Physiol Rev 63(4):1481–1535

    Article  CAS  Google Scholar 

  • Parker L, Howlett IC, Rusan ZM, Tanouye MA (2011) Seizure and epilepsy: studies of seizure disorders in Drosophila. Int Rev Neurobiol 99:1–21

    Article  Google Scholar 

  • Perkins KL (2006) Cell-attached voltage-clamp and current-clamp recording and stimulation techniques in brain slices. J Neurosci Methods 154(1–2):1–18

    Article  CAS  Google Scholar 

  • Qiao JD, Mao YL (2020) Knockout of PINK1 altered the neural connectivity of Drosophila dopamine PPM3 neurons at input and output sites. Invert Neurosci 20(3):11

    Article  CAS  Google Scholar 

  • Rabiej VK, Pflanzner T, Wagner T, Goetze K, Storck SE, Eble JA, Weggen S, Mueller-Klieser W, Pietrzik CU (2016) Low density lipoprotein receptor-related protein 1 mediated endocytosis of beta1-integrin influences cell adhesion and cell migration. Exp Cell Res 340(1):102–115

    Article  CAS  Google Scholar 

  • Robinson R, Krishnakumar A, Paulose CS (2009) Enhanced dopamine D1 and D2 receptor gene expression in the hippocampus of hypoglycaemic and diabetic rats. Cell Mol Neurobiol 29(3):365–372

    Article  CAS  Google Scholar 

  • Romeo R, Boden-El Mourabit D, Scheller A, Mark MD, Faissner A (2021) Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) as a novel regulator of early astroglial differentiation. Front Cell Neurosci 15:642521. https://doi.org/10.3389/fncel.2021.642521. PMID: 33679332; PMCID: PMC7930235

  • Schwechter EM, Veliskova J, Velisek L (2003) Correlation between extracellular glucose and seizure susceptibility in adult rats. Ann Neurol 53(1):91–101

    Article  CAS  Google Scholar 

  • Silvestri G, Moraes CT, Shanske S, Oh SJ, DiMauro S (1992) A new mtDNA mutation in the tRNA(Lys) gene associated with myoclonic epilepsy and ragged-red fibers (MERRF). Am J Hum Genet 51(6):1213–1217

    CAS  Google Scholar 

  • Singh BM, Strobos RJ (1980) Epilepsia partialis continua associated with nonketotic hyperglycemia: clinical and biochemical profile of 21 patients. Ann Neurol 8(2):155–160

    Article  CAS  Google Scholar 

  • Storck SE, Kurtyka M, Pietrzik CU (2021) Brain endothelial LRP1 maintains blood-brain barrier integrity. Fluids Barriers CNS 18(1):27

    Article  CAS  Google Scholar 

  • Storck SE, Meister S, Nahrath J, Meissner JN, Schubert N, Di Spiezio A, Baches S, Vandenbroucke RE, Bouter Y, Prikulis I, Korth C, Weggen S, Heimann A, Schwaninger M, Bayer TA, Pietrzik CU (2016) Endothelial LRP1 transports amyloid-beta(1–42) across the blood-brain barrier. J Clin Invest 126(1):123–136

    Article  Google Scholar 

  • Tumiene B, Ferreira CR, van Karnebeek CDM (2022) 2022 overview of metabolic epilepsies. Genes 13(3):508

    Article  CAS  Google Scholar 

  • Ulamek-Koziol M, Pluta R, Bogucka-Kocka A, Czuczwar SJ (2016) To treat or not to treat drug-refractory epilepsy by the ketogenic diet? That is the question. Ann Agric Environ Med 23(4):533–536

    Article  CAS  Google Scholar 

  • Wang J, Qiao JD, Liu XR, Liu DT, Chen YH, Wu Y, Sun Y, Yu J, Ren RN, Mei Z, Liu YX, Shi YW, Jiang M, Lin SM, He N, Li B, Bian WJ, Li BM, Yi YH, Su T, Liu HK, Gu WY, Liao WP (2021) UNC13B variants associated with partial epilepsy with favourable outcome. Brain 144(10):3050–3060

    Article  Google Scholar 

  • Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan F, Silverstein SC, Husemann J (2003) Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med 9(4):453–457

    Article  CAS  Google Scholar 

Download references

Acknowledgements

RNAi fly lines were donated from Tsing-Hua Fly Stock Center.

Funding

This work was supported by Guangzhou Medical University (No. 2019A023) and Guangzhou Postdoc Startup Fund (Jing-Da Qiao).

Author information

Authors and Affiliations

Authors

Contributions

Study design: JM Zhang and JD Qiao. Bioinformatic experiment: YP Li. Manuscript writing: JM Zhang, MJ Chen, JH He, P Kwan, YL Mao, and JD Qiao. Experiment performance and data analysis: JM Zhang, MJ Chen, JH He, ZC Li, YP Li, ZJ Ye, YH Bao, BJ Huang, WJ Zhang, YL Mao, and JD Qiao.

Corresponding authors

Correspondence to Yu-Ling Mao or Jing-da Qiao.

Ethics declarations

Ethics Approval

No ethical approval is required in this study.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The authors would like to add some more detail for the "Fly Stocks" information for the published article: Zhang et al., 2022, J. Mol. Neurosci. 72(8): 1706—1714.

In section "Methods and Materials", details of subsection "Fly Stocks" should be modified to "The flies were fed standard cornmeal and maintained in the incubator at 25 °C and 60–70% humidity on a 12:12-h light/dark cycle. UAS-Lrp1-RNAi (THU3999/FBgn0053087), UAS-Scn1a-RNAi (para-RNAi, positive control, THU1258/FBgn0264255), and UAS-Eaat1-RNAi (THU5473/FBgn0026439) flies were donated by Tsing Hua Fly Center (Tsinghua University, Beijing, China). The double balancer line and UAS-Eaat1 (8202) were purchased from Bloomington Fly Stock Center (Bloomington, IN, USA). The Gal4 driver line tub-Gal4, elav-Gal4, and repo-Gal4 were a gift from Prof. LIU JiYong (Guangzhou Medical University, Guangzhou, China), and the UAS-mCD8::GFP line was a gift from Prof. KE Ya (The Chinese University of Hong Kong, Hong Kong). Canton-S was used as the WT line in this study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JM., Chen, MJ., He, JH. et al. Ketone Body Rescued Seizure Behavior of LRP1 Deficiency in Drosophila by Modulating Glutamate Transport. J Mol Neurosci 72, 1706–1714 (2022). https://doi.org/10.1007/s12031-022-02026-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-022-02026-6

Keywords

Navigation