Skip to main content

Advertisement

Log in

Parthenolide, an NF-κB Inhibitor Ameliorates Diabetes-Induced Behavioural Deficit, Neurotransmitter Imbalance and Neuroinflammation in Type 2 Diabetes Rat Model

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Diabetes is associated with behavioural and neurochemical alterations. In this manuscript, we are reporting the beneficial effects of parthenolide, an NF-κB inhibitor on behavioural and neurochemical deficits in type 2 diabetic rat model. Diabetes was induced by high-fat diet followed by low dose of streptozotocin (35 mg/kg). Elevated plus maze, open-field, MWM and passive avoidance test paradigm were used to assess behavioural and cognitive deficits. Three-week treatment of parthenolide (0.25 and 0.50 mg/kg; i.p.) attenuated diabetes-induced alteration in cognitive function in Morris water maze and passive avoidance test. Anxiety-like behaviour was also reduced by parthenolide treatment. Moreover, TNF-α and IL-6 levels were significantly decreased in cortex and hippocampus of parthenolide-treated rats. Three-week parthenolide treatment also toned down the alteration of GABA and glutamate homoeostasis. Results of this study corroborate the involvement of neuroinflammation in the development of behavioural and neurochemical deficits in diabetic animals and point towards the therapeutic potential of parthenolide in diabetes-induced alteration of learning, memory and anxiety behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akrivos, J., Ravona-Springer, R., Schmeidler, J., LeRoith, D., Heymann, A., Preiss, R., et al. (2015). Glycemic control, inflammation, and cognitive function in older patients with type 2 diabetes. International Journal of Geriatric Psychiatry, 30(10), 1093–1100.

    Article  PubMed  Google Scholar 

  • Bak, L. K., Schousboe, A., & Waagepetersen, H. S. (2006). The glutamate/GABA-glutamine cycle: Aspects of transport, neurotransmitter homeostasis and ammonia transfer. Journal of Neurochemistry, 98, 641–653.

    Article  CAS  PubMed  Google Scholar 

  • Barry, C., Heys, J. G., & Hasselmo, M. E. (2012). Possible role of acetylcholine in regulating spatial novelty effects on theta rhythm and grid cells. Frontiers in Neural Circuits, 6, 5. doi:10.3389/fncir.2012.00005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carola, V., D’Olimpio, F., Brunamonti, E., Mangia, F., & Renzi, P. (2002). Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behavioural Brain Research, 134, 49–57.

    Article  PubMed  Google Scholar 

  • Christoffel, D. J., Golden, S. A., Heshmati, M., Graham, A., Birnbaum, S., Neve, R. L., et al. (2012). Effects of inhibitor of κB kinase activity in the nucleus accumbens on emotional behavior. Neuropsychopharmacology, 37(12), 2615–2623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curry, E. A., 3rd, Murry, D. J., Yoder, C., Fife, K., Armstrong, V., Nakshatri, H., et al. (2004). Phase I dose escalation trial of feverfew with standardized doses of parthenolide in patients with cancer. Investigational New Drugs, 22(3), 299–305. doi:10.1023/B:DRUG.0000026256.38560.be.

    Article  CAS  PubMed  Google Scholar 

  • Datusalia, A. K., & Sharma, S. S. (2014). Amelioration of diabetes-induced cognitive deficits by GSK-3beta inhibition is attributed to modulation of neurotransmitters and neuroinflammation. Molecular Neurobiology, 50(2), 390–405. doi:10.1007/s12035-014-8632-x.

    Article  CAS  PubMed  Google Scholar 

  • Datusalia, A. K., & Sharma, S. S. (2016). NF-kappaB inhibition resolves cognitive deficits in experimental type 2 diabetes mellitus through CREB and Glutamate/GABA neurotransmitters pathway. Current Neurovascular Research, 13(1), 22–32.

    Article  CAS  PubMed  Google Scholar 

  • D’Hooge, R., & De Deyn, P. P. (2001). Applications of the Morris water maze in the study of learning and memory. Brain Research Reviews, 36(1), 60–90.

    Article  PubMed  Google Scholar 

  • Dong, L., Qiao, H., Zhang, X., Zhang, X., Wang, C., Wang, L., et al. (2013). Parthenolide is neuroprotective in rat experimental stroke model: Downregulating NF-kappaB, phospho-p38MAPK, and caspase-1 and ameliorating BBB permeability. Mediators of Inflammation, 2013, 370804. doi:10.1155/2013/370804.

    Article  PubMed  PubMed Central  Google Scholar 

  • Donzis, E. J., & Tronson, N. C. (2014). Modulation of learning and memory by cytokines: Signaling mechanisms and long term consequences. Neurobiology of Learning and Memory, 115, 68–77. doi:10.1016/j.nlm.2014.08.008.

    Article  CAS  PubMed  Google Scholar 

  • Duncan, B. B., Schmidt, M. I., Pankow, J. S., Ballantyne, C. M., Couper, D., Vigo, A., et al. (2003). Low-grade systemic inflammation and the development of type 2 diabetes: The atherosclerosis risk in communities study. Diabetes, 52(7), 1799–1805.

    Article  CAS  PubMed  Google Scholar 

  • Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and cognitive performance: Attentional control theory. Emotion, 7, 336–353.

    Article  PubMed  Google Scholar 

  • Ganesh Yerra, V., Negi, G., Sharma, S. S., & Kumar, A. (2013). Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-κB pathways in diabetic neuropathy. Redox Biology, 1, 394–397. doi:10.1016/j.redox.2013.07.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghantous, A., Gali-Muhtasib, H., Vuorela, H., Saliba, N. A., & Darwiche, N. (2010). What made sesquiterpene lactones reach cancer clinical trials? Drug Discovery Today, 15(15–16), 668–678. doi:10.1016/j.drudis.2010.06.002.

    Article  CAS  PubMed  Google Scholar 

  • Ghantous, A., Sinjab, A., Herceg, Z., & Darwiche, N. (2013). Parthenolide: From plant shoots to cancer roots. Drug Discovery Today, 18(17–18), 894–905. doi:10.1016/j.drudis.2013.05.005.

    Article  CAS  PubMed  Google Scholar 

  • Gorelick, P. B. (2010). Role of inflammation in cognitive impairment: Results of observational epidemiological studies and clinical trials. Annals of the New York Academy of Sciences, 1207, 155–162. doi:10.1111/j.1749-6632.2010.05726.x.

    Article  PubMed  Google Scholar 

  • Gould, T. D., Dao, D. T., & Kovacsics, C. E. (2009). The open field test. In T.D. Gould (Ed.), Mood and Anxiety Related Phenotypes in Mice (pp. 1–20): Springer.

  • Hasselmo, M. E. (2006). The role of acetylcholine in learning and memory. Current Opinion in Neurobiology, 16, 710–715. doi:10.1016/j.conb.2006.09.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hensley, K. (2010). Neuroinflammation in Alzheimer’s disease: Mechanisms, pathologic consequences, and potential for therapeutic manipulation. Journal of Alzheimer’s Disease, 21, 1–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hicks, D., John, D., Makova, N. Z., Henderson, Z., Nalivaeva, N. N., & Turner, A. J. (2011). Membrane targeting, shedding and protein interactions of brain acetylcholinesterase. Journal of Neurochemistry, 116(5), 742–746. doi:10.1111/j.1471-4159.2010.07032.x.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, T., & Masterman, D. (2004). Mild cognitive impairment is associated with characteristic neuropsychiatric symptoms. Alzheimer Disease and Associated Disorders, 18, 17–21.

    Article  PubMed  Google Scholar 

  • IDF Diabetes Atlas Group. (2015). Update of mortality attributable to diabetes for the IDF Diabetes Atlas: Estimates for the year 2013. Diabetes Research and Clinical Practice, 109(3), 461–465.

    Article  CAS  PubMed  Google Scholar 

  • Jaworski, T., Lechat, B., Demedts, D., Gielis, L., Devijver, H., Borghgraef, P., et al. (2011). Dendritic degeneration, neurovascular defects, and inflammation precede neuronal loss in a mouse model for tau-mediated neurodegeneration. American Journal of Pathology, 179(4), 2001–2015. doi:10.1016/j.ajpath.2011.06.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juliana, C., Fernandes-Alnemri, T., Wu, J., Datta, P., Solorzano, L., Yu, J. W., et al. (2010). Anti-inflammatory compounds parthenolide and Bay 11-7082 are direct inhibitors of the inflammasome. Journal of Biological Chemistry, 285(13), 9792–9802. doi:10.1074/jbc.M109.082305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaltschmidt, B., Ndiaye, D., Korte, M., Pothion, S., Arbibe, L., Prullage, M., et al. (2006). NF-kappaB regulates spatial memory formation and synaptic plasticity through protein kinase A/CREB signaling. Molecular and Cellular Biology, 26(8), 2936–2946. doi:10.1128/MCB.26.8.2936-2946.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kodl, C. T., & Seaquist, E. R. (2008). Cognitive dysfunction and diabetes mellitus. Endocrine Reviews, 29, 494–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhad, A., Bishnoi, M., Tiwari, V., & Chopra, K. (2009). Suppression of NF-kappabeta signaling pathway by tocotrienol can prevent diabetes associated cognitive deficits. Pharmacology Biochemistry and Behavior, 92(2), 251–259. doi:10.1016/j.pbb.2008.12.012.

    Article  CAS  Google Scholar 

  • Kwok, B. H., Koh, B., Ndubuisi, M. I., Elofsson, M., & Crews, C. M. (2001). The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits IkappaB kinase. Chemistry and Biology, 8(8), 759–766.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Tang, Y., & Cai, D. (2012). IKKbeta/NF-kappaB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nature Cell Biology, 14(10), 999–1012. doi:10.1038/ncb2562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llansola, M., Montoliu, C., Agusti, A., Hernandez-Rabaza, V., Cabrera-Pastor, A., Gomez-Gimenez, B., et al. (2015). Interplay between glutamatergic and GABAergic neurotransmission alterations in cognitive and motor impairment in minimal hepatic encephalopathy. Neurochemistry International, 88, 15–19. doi:10.1016/j.neuint.2014.10.011.

    Article  CAS  PubMed  Google Scholar 

  • Manschot, S. M., Biessels, G. J., Cameron, N. E., Cotter, M. A., Kamal, A., Kappelle, L. J., et al. (2003). Angiotensin converting enzyme inhibition partially prevents deficits in water maze performance, hippocampal synaptic plasticity and cerebral blood flow in streptozotocin-diabetic rats. Brain Research, 966(2), 274–282. doi:10.1016/S0006-8993(02)04211-7.

    Article  CAS  PubMed  Google Scholar 

  • Materazzi, S., Benemei, S., Fusi, C., Gualdani, R., De Siena, G., Vastani, N., et al. (2013). Parthenolide inhibits nociception and neurogenic vasodilatation in the trigeminovascular system by targeting the TRPA1 channel. Pain, 154(12), 2750–2758. doi:10.1016/j.pain.2013.08.002.

    Article  CAS  PubMed  Google Scholar 

  • Meffert, M. K., Chang, J. M., Wiltgen, B. J., Fanselow, M. S., & Baltimore, D. (2003). NF-kappa B functions in synaptic signaling and behavior. Nature Neuroscience, 6(10), 1072–1078. doi:10.1038/nn1110.

    Article  CAS  PubMed  Google Scholar 

  • Mijnhout, G. S., Scheltens, P., Diamant, M., Biessels, G. J., Wessels, A. M., Simsek, S., et al. (2006). Diabetic encephalopathy: A concept in need of a definition. Diabetologia, 49, 1447–1448. doi:10.1007/s00125-006-0221-8.

    Article  CAS  PubMed  Google Scholar 

  • Mittra, S., Datta, A., Singh, S. K., & Singh, A. (2000). 5-Hydroxytryptamine-inhibiting property of Feverfew: Role of parthenolide content. Acta Pharmacologica Sinica, 21, 1106–1114.

    CAS  PubMed  Google Scholar 

  • Moosavi, M., Zarifkar, A. H., Farbood, Y., Dianat, M., Sarkaki, A., & Ghasemi, R. (2014). Agmatine protects against intracerebroventricular streptozotocin-induced water maze memory deficit, hippocampal apoptosis and Akt/GSK3beta signaling disruption. European Journal of Pharmacology, 736, 107–114. doi:10.1016/j.ejphar.2014.03.041.

    Article  CAS  PubMed  Google Scholar 

  • Morris, R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. Journal of Neuroscience Methods, 11, 47–60.

    Article  CAS  PubMed  Google Scholar 

  • Muriach, M., Flores-Bellver, M., Romero, F. J., & Barcia, J. M. (2014). Diabetes and the brain: Oxidative stress, inflammation, and autophagy. Oxidative Medicine and Cellular Longevity, 2014, 102158. doi:10.1155/2014/102158.

    Article  PubMed  PubMed Central  Google Scholar 

  • Myhrer, T. (2003). Neurotransmitter systems involved in learning and memory in the rat: A meta-analysis based on studies of four behavioral tasks. Brain Research Reviews, 41, 268–287. doi:10.1016/S0165-0173(02)00268-0.

    Article  CAS  PubMed  Google Scholar 

  • Ohta, Y., Tremblay, C., Schneider, J. A., Bennett, D. A., Calon, F., & Julien, J. P. (2014). Interaction of transactive response DNA binding protein 43 with nuclear factor kappaB in mild cognitive impairment with episodic memory deficits. Acta Neuropathology Communications, 2, 37. doi:10.1186/2051-5960-2-37.

    Article  Google Scholar 

  • Ownby, R. L. (2010). Neuroinflammation and cognitive aging. Current Psychiatry Reports, 12(1), 39–45. doi:10.1007/s11920-009-0082-1.

    Article  PubMed  Google Scholar 

  • Pandey, D. K., Rajkumar, R., Mahesh, R., & Radha, R. (2008). Depressant-like effects of parthenolide in a rodent behavioural antidepressant test battery. Journal of Pharmacy and Pharmacology, 60(12), 1643–1650. doi:10.1211/jpp/60.12.0010.

    Article  CAS  PubMed  Google Scholar 

  • Patel, S., & Santani, D. (2009). Role of NF-kappa B in the pathogenesis of diabetes and its associated complications. Pharmacological Reports, 61, 595–603.

    Article  CAS  PubMed  Google Scholar 

  • Phillips, E. C., Croft, C. L., Kurbatskaya, K., O’Neill, M. J., Hutton, M. L., Hanger, D. P., et al. (2014). Astrocytes and neuroinflammation in Alzheimer’s disease. Biochemical Society Transactions, 42(5), 1321–1325. doi:10.1042/BST20140155.

    Article  CAS  PubMed  Google Scholar 

  • Reske-Nielsen, E., Lundbæk, K., & Rafaelsen, O. J. (1966). Pathological changes in the central and peripheral nervous system of young long-term diabetics I. diabetic encephalopathy. Diabetologia, 1, 233–241. doi:10.1007/BF01257917.

    Article  CAS  PubMed  Google Scholar 

  • Rummel, C., Gerstberger, R., Roth, J., & Hubschle, T. (2011). Parthenolide attenuates LPS-induced fever, circulating cytokines and markers of brain inflammation in rats. Cytokine, 56(3), 739–748. doi:10.1016/j.cyto.2011.09.022.

    Article  CAS  PubMed  Google Scholar 

  • Saranitzky, E., White, C. M., Baker, E. L., Baker, W. L., & Coleman, C. I. (2009). Feverfew for migraine prophylaxis: A systematic review. Journal Dietary Supplements, 6(2), 91–103. doi:10.1080/19390210902861809.

    Article  Google Scholar 

  • Schmeisser, M. J., Baumann, B., Johannsen, S., Vindedal, G. F., Jensen, V., Hvalby, O. C., et al. (2012). IkappaB kinase/nuclear factor kappaB-dependent insulin-like growth factor 2 (Igf2) expression regulates synapse formation and spine maturation via Igf2 receptor signaling. Journal of Neuroscience, 32(16), 5688–5703. doi:10.1523/JNEUROSCI.0111-12.2012.

    Article  CAS  PubMed  Google Scholar 

  • Schousboe, A., Bak, L. K., Sickmann, H. M., Sonnewald, U., & Waagepetersen, H. S. (2007). Energy substrates to support glutamatergic and GABAergic synaptic function: Role of glycogen, glucose and lactate. Neurotoxicity Research, 12(4), 263–268.

    Article  CAS  PubMed  Google Scholar 

  • Shankaranarayana Rao, B. S., Raju, T. R., & Meti, B. L. (1998). Self-stimulation of lateral hypothalamus and ventral tegmentum increases the levels of noradrenaline, dopamine, glutamate, and AChE activity, but not 5-hydroxytryptamine and GABA levels in hippocampus and motor cortex. Neurochemical Research, 23(8), 1053–1059.

    Article  CAS  PubMed  Google Scholar 

  • Sickmann, H. M., Waagepetersen, H. S., Schousboe, A., Benie, A. J., & Bouman, S. D. (2012). Brain glycogen and its role in supporting glutamate and GABA homeostasis in a type 2 diabetes rat model. Neurochemistry International, 60, 267–275. doi:10.1016/j.neuint.2011.12.019.

    Article  CAS  PubMed  Google Scholar 

  • Skovso, S. (2014). Modeling type 2 diabetes in rats using high fat diet and streptozotocin. Journal of Diabetes Investigation, 5(4), 349–358. doi:10.1111/jdi.12235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, K. J., Béland, M., Clyde, M., Gariépy, G., Pagé, V., Badawi, G., et al. (2013). Association of diabetes with anxiety: A systematic review and meta-analysis. Journal of Psychosomatic Research, 74, 89–99. doi:10.1016/j.jpsychores.2012.11.013.

    Article  PubMed  Google Scholar 

  • Snow, W. M., Stoesz, B. M., Kelly, D. M., & Albensi, B. C. (2014). Roles for NF-kappaB and gene targets of NF-kappaB in synaptic plasticity, memory, and navigation. Molecular Neurobiology, 49(2), 757–770. doi:10.1007/s12035-013-8555-y.

    Article  CAS  PubMed  Google Scholar 

  • Srikumar, B., Ramkumar, K., Raju, T., & Shankaranarayana, R. (2004). Assay of acetylcholinesterase activity in the brain (pp. 142–144). Bangalore, India: National Institute of Mental Health and Neuro Sciences.

    Google Scholar 

  • Srinivasan, K., Viswanad, B., Asrat, L., Kaul, C. L., & Ramarao, P. (2005). Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: A model for type 2 diabetes and pharmacological screening. Pharmacological Research, 52(4), 313–320.

    Article  CAS  PubMed  Google Scholar 

  • Srodulski, S., Sharma, S., Bachstetter, A. B., Brelsfoard, J. M., Pascual, C., Xie, X. S., et al. (2014). Neuroinflammation and neurologic deficits in diabetes linked to brain accumulation of amylin. Molecular Neurodegeneration, 9, 30. doi:10.1186/1750-1326-9-30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun, B., Halabisky, B., Zhou, Y., Palop, J. J., Yu, G., Mucke, L., et al. (2009). Imbalance between GABAergic and Glutamatergic Transmission Impairs Adult Neurogenesis in an Animal Model of Alzheimer’s Disease. Cell Stem Cell, 5, 624–633. doi:10.1016/j.stem.2009.10.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tassorelli, C., Greco, R., Morazzoni, P., Riva, A., Sandrini, G., & Nappi, G. (2005). Parthenolide is the component of tanacetum parthenium that inhibits nitroglycerin-induced Fos activation: Studies in an animal model of migraine. Cephalalgia, 25(8), 612–621. doi:10.1111/j.1468-2982.2005.00915.x.

    Article  CAS  PubMed  Google Scholar 

  • Tellez, R., Gómez-Víquez, L., & Meneses, A. (2012). GABA, glutamate, dopamine and serotonin transporters expression on memory formation and amnesia. Neurobiology of Learning and Memory, 97, 189–201. doi:10.1016/j.nlm.2011.12.002.

    Article  CAS  PubMed  Google Scholar 

  • Tilstra, J. S., Clauson, C. L., Niedernhofer, L. J., & Robbins, P. D. (2011). NF-kappaB in Aging and Disease. Aging and Disease, 2(6), 449–465.

    PubMed  PubMed Central  Google Scholar 

  • von Bernhardi, R., Eugenin-von Bernhardi, L., & Eugenin, J. (2015). Microglial cell dysregulation in brain aging and neurodegeneration. Frontiers in Aging Neuroscience, 7, 124. doi:10.3389/fnagi.2015.00124.

    Google Scholar 

  • Walf, A. A., & Frye, C. A. (2007). The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nature Protocols, 2(2), 322–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, M., & Li, Q. (2015). Parthenolide could become a promising and stable drug with anti-inflammatory effects. Natural Product Research, 29(12), 1092–1101. doi:10.1080/14786419.2014.981541.

    Article  CAS  PubMed  Google Scholar 

  • Weber, J. T., O’Connor, M. F., Hayataka, K., Colson, N., Medora, R., Russo, E. B., et al. (1997). Activity of Parthenolide at 5HT2A receptors. Journal of Natural Products, 60, 651–653. doi:10.1021/np960644d.

    Article  CAS  PubMed  Google Scholar 

  • Yirmiya, R., & Goshen, I. (2011). Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behavior and Immunity, 25(2), 181–213. doi:10.1016/j.bbi.2010.10.015.

    Article  CAS  Google Scholar 

  • Zhao, Y., Krishnamurthy, B., Mollah, Z. U. A., Kay, T. W. H., & Thomas, H. E. (2011). NF-κB in type 1 diabetes. Inflammation and Allergy Drug Targets, 10, 208–217.

    Article  CAS  PubMed  Google Scholar 

  • Zou, J., & Crews, F. T. (2012). Inflammasome-IL-1beta signaling mediates ethanol inhibition of hippocampal neurogenesis. Frontiers in Neuroscience, 6, 77. doi:10.3389/fnins.2012.00077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by an institutional funding from National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar and Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Government of India. We thank University Grant Commission, New Delhi, India, for providing research fellowship to Mr. Ashok Kumar Datusalia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyam S. Sharma.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khare, P., Datusalia, A.K. & Sharma, S.S. Parthenolide, an NF-κB Inhibitor Ameliorates Diabetes-Induced Behavioural Deficit, Neurotransmitter Imbalance and Neuroinflammation in Type 2 Diabetes Rat Model. Neuromol Med 19, 101–112 (2017). https://doi.org/10.1007/s12017-016-8434-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-016-8434-6

Keywords

Navigation