Skip to main content
Log in

mTOR Signaling in Parkinson’s Disease

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

As a key regulator of cell metabolism and survival, mechanistic target of rapamycin (mTOR) emerges as a novel therapeutic target for Parkinson’s disease (PD). A growing body of research indicates that restoring perturbed mTOR signaling in PD models can prevent neuronal cell death. Nevertheless, molecular mechanisms underlying mTOR-mediated effects in PD have not been fully understood yet. Here, we review recent progress in characterizing the association of mTOR signaling with PD risk factors and further discuss the potential roles of mTOR in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Anderson, G., & Maes, M. (2014). Neurodegeneration in Parkinson’s disease: interactions of oxidative stress, tryptophan catabolites and depression with mitochondria and sirtuins. Molecular Neurobiology, 49, 771–783.

    Article  CAS  PubMed  Google Scholar 

  • Anglade, P., et al. (1997). Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histology and Histopathology, 12, 25–31.

    CAS  PubMed  Google Scholar 

  • Bao, X. Q., et al. (2012). FLZ protects dopaminergic neuron through activating protein kinase B/mammalian target of rapamycin pathway and inhibiting RTP801 expression in Parkinson’s disease models. Neuroscience, 202, 396–404.

    Article  CAS  PubMed  Google Scholar 

  • Bjedov, I., et al. (2010). Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metabolism, 11, 35–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bockaert, J., & Marin, P. (2015). mTOR in brain physiology and pathologies. Physiological Reviews, 95, 1157–1187.

    Article  CAS  PubMed  Google Scholar 

  • Boland, D. F., & Stacy, M. (2012). The economic and quality of life burden associated with Parkinson’s disease: A focus on symptoms. The American Journal of Managed Care, 18, S168–S175.

    PubMed  Google Scholar 

  • Cannon, J. R., et al. (2013). Expression of human E46K-mutated α-synuclein in BAC-transgenic rats replicates early-stage Parkinson’s disease features and enhances vulnerability to mitochondrial impairment. Experimental Neurology, 240, 44–56.

    Article  CAS  PubMed  Google Scholar 

  • Cartier, A. E., et al. (2012). Differential effects of UCHL1 modulation on alpha-synuclein in PD-like models of alpha-synucleinopathy. PLoS ONE, 7, e34713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, L., et al. (2008). MAPK and mTOR pathways are involved in cadmium-induced neuronal apoptosis. Journal of Neurochemistry, 105, 251–261.

    Article  CAS  PubMed  Google Scholar 

  • Chen, L., et al. (2010). Hydrogen peroxide inhibits mTOR signaling by activation of AMPKalpha leading to apoptosis of neuronal cells. Laboratory Investigation, 90, 762–773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, L., et al. (2011). Cadmium induction of reactive oxygen species activates the mTOR pathway, leading to neuronal cell death. Free Radical Biology & Medicine, 50, 624–632.

    Article  CAS  Google Scholar 

  • Chen, L. L., et al. (2014). Corynoxine, a natural autophagy enhancer, promotes the clearance of alpha-synuclein via Akt/mTOR pathway. Journal of Neuroimmune Pharmacology, 9, 380–387.

    Article  PubMed  Google Scholar 

  • Cheung, Z. H., & Ip, N. Y. (2011). Autophagy deregulation in neurodegenerative diseases—Recent advances and future perspectives. Journal of Neurochemistry, 118, 317–325.

    Article  CAS  PubMed  Google Scholar 

  • Choi, K. C., et al. (2010). A novel mTOR activating protein protects dopamine neurons against oxidative stress by repressing autophagy related cell death. Journal of Neurochemistry, 112, 366–376.

    Article  CAS  PubMed  Google Scholar 

  • Chong, Z. Z., et al. (2012). PRAS40 is an integral regulatory component of erythropoietin mTOR signaling and cytoprotection. PLoS ONE, 7, e45456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choo, A. Y., et al. (2008). Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proceedings of the National Academy of Sciences of the United States of America, 105, 17414–17419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu, Y., et al. (2009). Alterations in lysosomal and proteasomal markers in Parkinson’s disease: Relationship to alpha-synuclein inclusions. Neurobiology of Diseases, 35, 385–398.

    Article  CAS  Google Scholar 

  • Ciccone, S., et al. (2013). Parkinson’s disease: A complex interplay of mitochondrial DNA alterations and oxidative stress. International Journal of Molecular Sciences, 14, 2388–2409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornu, M., Albert, V., & Hall, M. N. (2013). mTOR in aging, metabolism, and cancer. Current Opinion in Genetics & Development, 23, 53–62.

    Article  CAS  Google Scholar 

  • Crews, L., et al. (2010). Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy. PLoS ONE, 5, e9313.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cuervo, A. M., et al. (2005). Autophagy and aging: The importance of maintaining “clean” cells. Autophagy, 1, 131–140.

    Article  PubMed  Google Scholar 

  • Cullen, V., et al. (2011). Acid β-glucosidase mutants linked to Gaucher disease, Parkinson disease, and Lewy body dementia alter α-synuclein processing. Annals of Neurology, 69, 940–953.

    Article  CAS  PubMed  Google Scholar 

  • Dauer, W., & Przedborski, S. (2003). Parkinson’s disease: Mechanisms and models. Neuron, 39, 889–909.

    Article  CAS  PubMed  Google Scholar 

  • Dawson, T. M., & Dawson, V. L. (2003). Molecular pathways of neurodegeneration in Parkinson’s disease. Science, 302, 819–822.

    Article  CAS  PubMed  Google Scholar 

  • Decressac, M., & Bjorklund, A. (2013). mTOR inhibition alleviates L-DOPA-induced dyskinesia in parkinsonian rats. Journal of Parkinsons Disease, 3, 13–17.

    CAS  Google Scholar 

  • Decressac, M., et al. (2013). TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity. Proceedings of the National Academy of Sciences of the United States of America, 110, E1817–E1826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dehay, B., et al. (2010). Pathogenic lysosomal depletion in Parkinson’s disease. Journal of Neuroscience, 30, 12535–12544.

    Article  CAS  PubMed  Google Scholar 

  • Dehay, B., et al. (2015). Targeting α-synuclein for treatment of Parkinson’s disease: Mechanistic and therapeutic considerations. Lancet Neurology, 14, 855–866.

    Article  CAS  PubMed  Google Scholar 

  • Dennis, M. D., Kimball, S. R., & Jefferson, L. S. (2013). Mechanistic target of rapamycin complex 1 (mTORC1)-mediated phosphorylation is governed by competition between substrates for interaction with raptor. Journal of Biological Chemistry, 288, 10–19.

    Article  CAS  PubMed  Google Scholar 

  • Dexter, D. T., & Jenner, P. (2013). Parkinson disease: From pathology to molecular disease mechanisms. Free Radical Biology and Medicine, 62, 132–144.

    Article  CAS  PubMed  Google Scholar 

  • DeYoung, M. P., et al. (2008). Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes & Development, 22, 239–251.

    Article  CAS  Google Scholar 

  • Dijkstra, A. A., et al. (2015). Evidence for immune response, axonal dysfunction and reduced endocytosis in the substantia nigra in early stage Parkinson’s disease. PLoS ONE, 10, e0128651.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Domanskyi, A., et al. (2011). Pten ablation in adult dopaminergic neurons is neuroprotective in Parkinson’s disease models. FASEB Journal, 25, 2898–2910.

    Article  CAS  PubMed  Google Scholar 

  • Francois, A., et al. (2014). Impairment of autophagy in the central nervous system during lipopolysaccharide-induced inflammatory stress in mice. Molecular Brain, 7, 56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frias, M. A., et al. (2006). mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Current Biology, 16, 1865–1870.

    Article  CAS  PubMed  Google Scholar 

  • Gao, X., et al. (2002). Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling. Nature Cell Biology, 4, 699–704.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Martinez, J. M., & Alessi, D. R. (2008). mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochemical Journal, 416, 375–385.

    Article  CAS  PubMed  Google Scholar 

  • Guertin, D. A., et al. (2006). Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Developmental Cell, 11, 859–871.

    Article  CAS  PubMed  Google Scholar 

  • Gulhati, P., et al. (2011). mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Research, 71, 3246–3256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gumy, L. F., Tan, C. L., & Fawcett, J. W. (2010). The role of local protein synthesis and degradation in axon regeneration. Experimental Neurology, 223, 28–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha, J. Y., et al. (2014). Tnfaip8l1/Oxi-beta binds to FBXW5, increasing autophagy through activation of TSC2 in a Parkinson’s disease model. Journal of Neurochemistry, 129, 527–538.

    Article  CAS  PubMed  Google Scholar 

  • Hara, T., et al. (2006). Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature, 441, 885–889.

    Article  CAS  PubMed  Google Scholar 

  • He, C., et al. (2013). Dissociation of Bcl-2-Beclin1 complex by activated AMPK enhances cardiac autophagy and protects against cardiomyocyte apoptosis in diabetes. Diabetes, 62, 1270–1281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, Y., & Tong, Y. (2010). A trojan horse for Parkinson’s disease. Science Signaling, 3, pe13.

    Article  PubMed  CAS  Google Scholar 

  • Huang, J., et al. (2008). The TSC1–TSC2 complex is required for proper activation of mTOR complex 2. Molecular and Cellular Biology, 28, 4104–4115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, J., et al. (2009). Signaling events downstream of mammalian target of rapamycin complex 2 are attenuated in cells and tumors deficient for the tuberous sclerosis complex tumor suppressors. Cancer Research, 69, 6107–6114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain, S., et al. (2013). Ubiquitin hydrolase UCH-L1 destabilizes mTOR complex 1 by antagonizing DDB1-CUL4-mediated ubiquitination of raptor. Molecular and Cellular Biology, 33, 1188–1197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imai, Y., et al. (2008). Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO Journal, 27, 2432–2443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoki, K., Zhu, T., & Guan, K. L. (2003). TSC2 mediates cellular energy response to control cell growth and survival. Cell, 115, 577–590.

    Article  CAS  PubMed  Google Scholar 

  • Inoki, K., et al. (2002). TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nature Cell Biology, 4, 648–657.

    Article  CAS  PubMed  Google Scholar 

  • Jacinto, E., et al. (2004). Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nature Cell Biology, 6, 1122–1128.

    Article  CAS  PubMed  Google Scholar 

  • Jaworski, J., & Sheng, M. (2006). The growing role of mTOR in neuronal development and plasticity. Molecular Neurobiology, 34, 205–219.

    Article  CAS  PubMed  Google Scholar 

  • Jayaram, H. N., Kusumanchi, P., & Yalowitz, J. A. (2011). NMNAT expression and its relation to NAD metabolism. Current Medicinal Chemistry, 18, 1962–1972.

    Article  CAS  PubMed  Google Scholar 

  • Jeong, J. K., et al. (2012). Autophagy induced by resveratrol prevents human prion protein-mediated neurotoxicity. Neuroscience Research, 73, 99–105.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, J., et al. (2013a). Rapamycin protects the mitochondria against oxidative stress and apoptosis in a rat model of Parkinson’s disease. International Journal of Molecular Medicine, 31, 825–832.

    CAS  PubMed  Google Scholar 

  • Jiang, T. F., et al. (2013b). Curcumin ameliorates the neurodegenerative pathology in A53T α-synuclein cell model of Parkinson’s disease through the downregulation of mTOR/p70S6K signaling and the recovery of macroautophagy. Journal of Neuroimmune Pharmacology, 8, 356–369.

    Article  PubMed  Google Scholar 

  • Kahn, B. B., et al. (2005). AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism. Cell Metabolism, 1, 15–25.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S. R., et al. (2011). Dopaminergic pathway reconstruction by Akt/Rheb-induced axon regeneration. Annals of Neurology, 70, 110–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, H. J., et al. (2014a). Neuroprotective effect of chebulagic acid via autophagy induction in SH-SY5Y cells. Biomolecules & Therapeutics (Seoul), 22, 275–281.

    Article  CAS  Google Scholar 

  • Kim, K. A., et al. (2014b). High glucose condition induces autophagy in endothelial progenitor cells contributing to angiogenic impairment. Biological and Pharmaceutical Bulletin, 37, 1248–1252.

    Article  CAS  PubMed  Google Scholar 

  • Kim, C., et al. (2015). Antagonizing neuronal toll-like receptor 2 prevents synucleinopathy by activating autophagy. Cell Reports, 13, 771–782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsu, M., et al. (2006). Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature, 441, 880–884.

    Article  CAS  PubMed  Google Scholar 

  • Laplante, M., & Sabatini, D. M. (2012). mTOR signaling in growth control and disease. Cell, 149, 274–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim, Y. M., et al. (2014). Systemic autophagy insufficiency compromises adaptation to metabolic stress and facilitates progression from obesity to diabetes. Nature Communications, 5, 4934.

    Article  CAS  PubMed  Google Scholar 

  • Lin, X., et al. (2012). Conditional expression of Parkinson’s disease-related mutant a-synuclein in the midbrain dopaminergic neurons causes progressive neurodegeneration and degradation of transcription factor nuclear receptor related 1. Journal of Neuroscience, 32, 9248–9264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loewith, R., et al. (2002). Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Molecular Cell, 10, 457–468.

    Article  CAS  PubMed  Google Scholar 

  • Ma, X. M., & Blenis, J. (2009). Molecular mechanisms of mTOR-mediated translational control. Nature Reviews Molecular Cell Biology, 10, 307–318.

    Article  PubMed  CAS  Google Scholar 

  • Magri, L., et al. (2011). Sustained activation of mTOR pathway in embryonic neural stem cells leads to development of tuberous sclerosis complex-associated lesions. Cell Stem Cell, 9, 447–462.

    Article  CAS  PubMed  Google Scholar 

  • Maiese, K. (2015). Programming apoptosis and autophagy with novel approaches for diabetes mellitus. Current Neurovascular Research, 12, 173–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiese, K., et al. (2010). Oxidative stress: Biomarkers and novel therapeutic pathways. Experimental Gerontology, 45, 217–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiese, K., et al. (2013). mTOR: On target for novel therapeutic strategies in the nervous system. Trends in Molecular Medicine, 19, 51–60.

    Article  CAS  PubMed  Google Scholar 

  • Malagelada, C., Jin, Z. H., & Greene, L. A. (2008). RTP801 is induced in Parkinson’s disease and mediates neuron death by inhibiting Akt phosphorylation/activation. Journal of Neuroscience, 28, 14363–14371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malagelada, C., et al. (2006). RTP801 is elevated in Parkinson brain substantia nigral neurons and mediates death in cellular models of Parkinson’s disease by a mechanism involving mammalian target of rapamycin inactivation. Journal of Neuroscience, 26, 9996–10005.

    Article  CAS  PubMed  Google Scholar 

  • Malagelada, C., et al. (2010). Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson’s disease. Journal of Neuroscience, 30, 1166–1175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning, B. D., & Cantley, L. C. (2003). Rheb fills a GAP between TSC and TOR. Trends in Biochemical Sciences, 28, 573–576.

    Article  CAS  PubMed  Google Scholar 

  • Menzies, F. M., Fleming, A., & Rubinsztein, D. C. (2015). Compromised autophagy and neurodegenerative diseases. Nature Reviews Neuroscience, 16, 345–357.

    Article  CAS  PubMed  Google Scholar 

  • Murata, H., et al. (2011). A new cytosolic pathway from a Parkinson disease-associated kinase, BRPK/PINK1: Activation of AKT via mTORC2. Journal of Biological Chemistry, 286, 7182–7189.

    Article  CAS  PubMed  Google Scholar 

  • Mythri, R. B., et al. (2011). Evaluation of markers of oxidative stress, antioxidant function and astrocytic proliferation in the striatum and frontal cortex of Parkinson’s disease brains. Neurochemical Research, 36, 1452–1463.

    Article  CAS  PubMed  Google Scholar 

  • Nakka, V. P., Prakash-Babu, P., & Vemuganti, R. (2016). Crosstalk between endoplasmic reticulum stress, oxidative stress, and autophagy: Potential therapeutic targets for acute CNS injuries. Molecular Neurobiology, 53, 532–544.

    Article  CAS  PubMed  Google Scholar 

  • Nordstrom, U., et al. (2015). Progressive nigrostriatal terminal dysfunction and degeneration in the engrailed1 heterozygous mouse model of Parkinson’s disease. Neurobiology of Diseases, 73, 70–82.

    Article  CAS  Google Scholar 

  • Oh, W. J., & Jacinto, E. (2011). mTOR complex 2 signaling and functions. Cell Cycle, 10, 2305–2316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan, T., et al. (2008). Neuroprotection of rapamycin in lactacystin-induced neurodegeneration via autophagy enhancement. Neurobiology of Diseases, 32, 16–25.

    Article  CAS  Google Scholar 

  • Pan, T., et al. (2009). Rapamycin protects against rotenone-induced apoptosis through autophagy induction. Neuroscience, 164, 541–551.

    Article  CAS  PubMed  Google Scholar 

  • Panov, A., et al. (2005). Rotenone model of Parkinson disease: Multiple brain mitochondria dysfunctions after short term systemic rotenone intoxication. Journal of Biological Chemistry, 280, 42026–42035.

    Article  CAS  PubMed  Google Scholar 

  • Pearce, L. R., et al. (2011). Protor-1 is required for efficient mTORC2-mediated activation of SGK1 in the kidney. Biochemical Journal, 436, 169–179.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Revuelta, B. I., et al. (2014). Metformin lowers Ser-129 phosphorylated α-synuclein levels via mTOR-dependent protein phosphatase 2A activation. Cell Death and Disease, 5, e1209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perier, C., et al. (2003). The rotenone model of Parkinson’s disease. Trends in Neurosciences, 26, 345–346.

    Article  CAS  PubMed  Google Scholar 

  • Perier, C., et al. (2005). Complex I deficiency primes Bax-dependent neuronal apoptosis through mitochondrial oxidative damage. Proceedings of the National Academy of Sciences of the United States of America, 102, 19126–19131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson, T. R., et al. (2009). DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell, 137, 873–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravikumar, B., et al. (2006). Rapamycin pre-treatment protects against apoptosis. Human Molecular Genetics, 15, 1209–1216.

    Article  CAS  PubMed  Google Scholar 

  • Richardson, J. R., et al. (2005). Paraquat neurotoxicity is distinct from that of MPTP and rotenone. Toxicological Sciences, 88, 193–201.

    Article  CAS  PubMed  Google Scholar 

  • Rieker, C., et al. (2011). Nucleolar disruption in dopaminergic neurons leads to oxidative damage and parkinsonism through repression of mammalian target of rapamycin signaling. Journal of Neuroscience, 31, 453–460.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Blanco, J., et al. (2012). Cooperative action of JNK and AKT/mTOR in 1-methyl-4-phenylpyridinium-induced autophagy of neuronal PC12 cells. Journal of Neuroscience Research, 90, 1850–1860.

    Article  CAS  PubMed  Google Scholar 

  • Romani-Aumedes, J., et al. (2014). Parkin loss of function contributes to RTP801 elevation and neurodegeneration in Parkinson’s disease. Cell Death and Disease, 5, e1364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruffels, J., Griffin, M., & Dickenson, J. M. (2004). Activation of ERK1/2, JNK and PKB by hydrogen peroxide in human SH-SY5Y neuroblastoma cells: role of ERK1/2 in H2O2-induced cell death. European Journal of Pharmacology, 483, 163–173.

    Article  CAS  PubMed  Google Scholar 

  • Santini, E., et al. (2009). Inhibition of mTOR signaling in Parkinson’s disease prevents L-DOPA-induced dyskinesia. Science Signaling, 2, 36.

    Article  Google Scholar 

  • Sarbassov, D. D., et al. (2004). Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Current Biology, 14, 1296–1302.

    Article  CAS  PubMed  Google Scholar 

  • Sarbassov, D. D., et al. (2006). Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Molecular Cell, 22, 159–168.

    Article  CAS  PubMed  Google Scholar 

  • Sarkar, S., et al. (2005). Lithium induces autophagy by inhibiting inositol monophosphatase. Journal of Cell Biology, 170, 1101–1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar, S., et al. (2007). Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. Journal of Biological Chemistry, 282, 5641–5652.

    Article  CAS  PubMed  Google Scholar 

  • Schapira, A. H., et al. (2014). Slowing of neurodegeneration in Parkinson’s disease and Huntington’s disease: Future therapeutic perspectives. Lancet, 384, 545–555.

    Article  CAS  PubMed  Google Scholar 

  • Selvaraj, S., et al. (2012). Neurotoxin-induced ER stress in mouse dopaminergic neurons involves downregulation of TRPC1 and inhibition of AKT/mTOR signaling. The Journal of Clinical Investigation, 122, 1354–1367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shang, Y. C., et al. (2011). Erythropoietin and Wnt1 govern pathways of mTOR, Apaf-1, and XIAP in inflammatory microglia. Current Neurovascular Research, 8, 270–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shang, Y. C., et al. (2012a). Prevention of beta-amyloid degeneration of microglia by erythropoietin depends on Wnt1, the PI 3-K/mTOR pathway, Bad, and Bcl-xL. Aging, 4, 187–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shang, Y. C., et al. (2012b). Wnt1 inducible signaling pathway protein 1 (WISP1) targets PRAS40 to govern beta-amyloid apoptotic injury of microglia. Current Neurovascular Research, 9, 239–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shulman, J. M., De Jager, P. L., & Feany, M. B. (2011). Parkinson’s disease: Genetics and pathogenesis. Annual Review of Pathology: Mechanisms of Disease, 6, 193–222.

    Article  CAS  Google Scholar 

  • Silva, D. F., et al. (2011). Mitochondria: the common upstream driver of amyloid-beta and tau pathology in Alzheimer’s disease. Current Alzheimer Research, 8, 563–572.

    Article  CAS  PubMed  Google Scholar 

  • Spencer, B., et al. (2009). Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. Journal of Neuroscience, 29, 13578–13588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramaniam, S., et al. (2012). Rhes, a striatal-enriched small G protein, mediates mTOR signaling and L-DOPA-induced dyskinesia. Nature Neuroscience, 15, 191–193.

    Article  CAS  Google Scholar 

  • Swiech, L., et al. (2008). Role of mTOR in physiology and pathology of the nervous system. Biochimica et Biophysica Acta, 1784, 116–132.

    Article  CAS  PubMed  Google Scholar 

  • Tain, L. S., et al. (2009). Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss. Nature Neuroscience, 12, 1129–1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tee, A. R., et al. (2002). Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proceedings of the National Academy of Sciences of the United States of America, 99, 13571–13576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thoreen, C. C., & Sabatini, D. M. (2009). Rapamycin inhibits mTORC1, but not completely. Autophagy, 5, 725–726.

    Article  CAS  PubMed  Google Scholar 

  • Thoreen, C. C., et al. (2009). An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. Journal of Biological Chemistry, 284, 8023–8032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tieu, K. (2011). A guide to neurotoxic animal models of Parkinson’s disease. Cold Spring Harbor Perspectives in Medicine, 1, a009316.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vakifahmetoglu-Norberg, H., Xia, H. G., & Yuan, J. (2015). Pharmacologic agents targeting autophagy. Journal of Clinical Investigation, 125, 5–13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vila, M., et al. (2011). Lysosomal membrane permeabilization in Parkinson disease. Autophagy, 7, 98–100.

    Article  PubMed  Google Scholar 

  • Wang, H., et al. (2012a). Proline-rich Akt substrate of 40 kDa (PRAS40): A novel downstream target of PI3 k/Akt signaling pathway. Cellular Signalling, 24, 17–24.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., et al. (2012b). Pterostilbene simultaneously induces apoptosis, cell cycle arrest and cyto-protective autophagy in breast cancer cells. American Journal of Translational Research, 4, 44–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Webb, J. L., et al. (2003). Alpha-synuclein is degraded by both autophagy and the proteasome. Journal of Biological Chemistry, 278, 25009–25013.

    Article  CAS  PubMed  Google Scholar 

  • Williams, A. C., et al. (2012). Nicotinamide, NAD(P)(H), and methyl-group homeostasis evolved and became a determinant of ageing diseases: Hypotheses and lessons from pellagra. Current Gerontology and Geriatrics Research, 2012, 302875.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wills, J., et al. (2012). Paraquat, but not maneb, induces synucleinopathy and tauopathy in striata of mice through inhibition of proteasomal and autophagic pathways. PLoS ONE, 7, e30745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong, E., & Cuervo, A. M. (2010). Autophagy gone awry in neurodegenerative diseases. Nature Neuroscience, 13, 805–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, A. G., et al. (2013). Onjisaponin B derived from Radix Polygalae enhances autophagy and accelerates the degradation of mutant a-synuclein and huntingtin in PC-12 cells. International Journal of Molecular Sciences, 14, 22618–22641.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wullschleger, S., Loewith, R., & Hall, M. N. (2006). TOR signaling in growth and metabolism. Cell, 124, 471–484.

    Article  CAS  PubMed  Google Scholar 

  • Xiong, X., et al. (2014). PRAS40 plays a pivotal role in protecting against stroke by linking the Akt and mTOR pathways. Neurobiology of Diseases, 66, 43–52.

    Article  CAS  Google Scholar 

  • Xu, B., et al. (2011). Calcium signaling is involved in cadmium-induced neuronal apoptosis via induction of reactive oxygen species and activation of MAPK/mTOR network. PLoS ONE, 6, e19052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, Y., et al. (2014). Activation of AMPK and inactivation of Akt result in suppression of mTOR-mediated S6K1 and 4E-BP1 pathways leading to neuronal cell death in in vitro models of Parkinson’s disease. Cellular Signalling, 26, 1680–1689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yacoubian, T. A., & Standaert, D. G. (2009). Targets for neuroprotection in Parkinson’s disease. Biochimica et Biophysica Acta, 1792, 676–687.

    Article  CAS  PubMed  Google Scholar 

  • Yamada, E., & Singh, R. (2012). Mapping autophagy on to your metabolic radar. Diabetes, 61, 272–280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, J. Q., et al. (2014). Overexpression of human E46K mutant a-synuclein impairs macroautophagy via inactivation of JNK1-Bcl-2 pathway. Molecular Neurobiology, 50, 685–701.

    Article  CAS  PubMed  Google Scholar 

  • Yang, H., et al. (2011). Oxidative stress and diabetes mellitus. Clinical Chemistry and Laboratory Medicine, 49, 1773–1782.

    CAS  PubMed  Google Scholar 

  • Yu, W. H., et al. (2009). Metabolic activity determines efficacy of macroautophagic clearance of pathological oligomeric alpha-synuclein. American Journal of Pathology, 175, 736–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng, X. S., et al. (2014). The role of thioredoxin-1 in suppression of endoplasmic reticulum stress in Parkinson disease. Free Radical Biology and Medicine, 67, 10–18.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z., et al. (2015). Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitro and in vivo models of Parkinson disease. Free Radical Biology and Medicine, 84, 331–343.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Q., et al. (2015). Rotenone induction of hydrogen peroxide inhibits mTOR-mediated S6K1 and 4E-BP1/eIF4E pathways, leading to neuronal apoptosis. Toxicological Sciences, 143, 81–96.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 11375213, 21390411) and Hundred Talents Program of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, Ap., Chen, J., Zhao, Y. et al. mTOR Signaling in Parkinson’s Disease. Neuromol Med 19, 1–10 (2017). https://doi.org/10.1007/s12017-016-8417-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-016-8417-7

Keywords

Navigation