Skip to main content

Advertisement

Log in

GC and VDR SNPs and Vitamin D Levels in Parkinson’s Disease: The Relevance to Clinical Features

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

An Erratum to this article was published on 21 July 2016

Abstract

Vitamin D deficiency is suggested to be associated with Parkinson’s disease (PD). Our aim was to investigate the serum 25-hydroxyvitamin D3 (25OHD) levels of PD patients in Turkish cohort, to investigate any association of vitamin D binding protein (GC) genotypes with PD due to the significant role of GC in vitamin D transport, to determine whether vitamin D receptor (VDR) haplotype that we previously demonstrated to be a risk haplotype for AD is also a common haplotype for PD and to investigate any relevant consequence of serum 25OHD levels, GC or VDR genotypes on clinical features of PD. Three hundred eighty-two PD patients and 242 healthy subjects were included in this study. The serum 25OHD levels were investigated by CLIA, and GC and VDR SNPs were evaluated with LightSnip. Our results indicated a strong relationship between low serum 25OHD levels and PD (p < 0.001). rs7041 of GC and ApaI of VDR were associated with the PD risk (p < 0.05). Minor allele carriers for BsmI of VDR gene in both PD patients and healthy subjects had significantly higher levels of serum 25OHD (p < 0.05). The homozygous major allele carriers for rs2282679, rs3755967 and rs2298850 of GC gene in PD patients with slower progression had significantly higher levels of serum 25OHD (p  < 0.05). Minor allele carriers for FokI of VDR gene were more frequent in patients with advanced-stage PD (p < 0.05). Consequently, this is the first study demonstrating GC gene as a risk factor for PD. The relationship between PD’s clinical features and low 25OHD or risk genotypes might have effects on PD independently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdi, F., Quinn, J. F., Jankovic, J., McIntosh, M., Leverenz, J. B., Peskind, E., et al. (2006). Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodegenerative disorders. Journal of Alzheimer’s Disease, 9(3), 293–348.

    CAS  PubMed  Google Scholar 

  • Alkan, C., Kavak, P., Somel, M., Gokcumen, O., Ugurlu, S., Saygi, C., et al. (2014). Whole genome sequencing of Turkish genomes reveals functional private alleles and impact of genetic interactions with Europe, Asia and Africa. BMC Genomics, 15, 963. doi:10.1186/1471-2164-15-963.

    Article  PubMed  PubMed Central  Google Scholar 

  • Annweiler, C., Schott, A. M., Allali, G., Bridenbaugh, S. A., Kressig, R. W., Allain, P., et al. (2010). Association of vitamin D deficiency with cognitive impairment in older women: Cross-sectional study. Neurology, 74(1), 27–32.

    Article  CAS  PubMed  Google Scholar 

  • Beecham, G. W., Martin, E. R., Li, Y. J., Slifer, M. A., Gilbert, J. R., Haines, J. L., et al. (2009). Genome-wide association study implicates a chromosome 12 risk locus for late-onset Alzheimer disease. The American Journal of Human Genetics, 84, 35–43.

    Article  CAS  PubMed  Google Scholar 

  • Beydoun, M. A., Ding, E. L., Beydoun, H. A., Tanaka, T., Ferrucci, L., & Zonderman, A. B. (2012). Vitamin D receptor and megalin gene polymorphisms and their associations with longitudinal cognitive change in US adults. The American Journal of Clinical Nutrition, 95, 163–178.

    Article  CAS  PubMed  Google Scholar 

  • Bhan, I. (2014). Vitamin d binding protein and bone health. International Journal of Endocrinology, 2014, 561214. doi:10.1155/2014/561214.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bishnoi, R. J., Palmer, R. F., & Royall, D. R. (2015). Vitamin D binding protein as a serum biomarker of Alzheimer’s disease. Journal of Alzheimer’s Disease, 43(1), 37–45. doi:10.3233/JAD-140042.

    CAS  PubMed  Google Scholar 

  • Blacker, D., Wilcox, M. A., Laird, N. M., Rodes, L., Horvath, S. M., Go, R. C., et al. (1998). Alpha-2 macroglobulin is genetically associated with Alzheimer disease. Nature Genetics, 19, 357–360.

    Article  CAS  PubMed  Google Scholar 

  • Butler, M. W., Burt, A., Edwards, T. L., Zuchner, S., Scott, W. K., Martin, E. R., et al. (2011). Vitamin D receptor gene as a candidate gene for Parkinson disease. Annals of Human Genetics, 75(2), 201–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cass, W. A., Peters, L. E., Fletcher, A. M., & Yurek, D. M. (2012). Evoked dopamine overflow is augmented in the striatum of calcitriol treated rats. Neurochemistry International, 60(2), 186–191. doi:10.1016/j.neuint.2011.11.010.

    Article  CAS  PubMed  Google Scholar 

  • Cherniack, E. P., Florez, H., Roos, B. A., Troen, B. R., & Levis, S. (2008). Hypovitaminosis D in the elderly: From bone to brain. The Journal of Nutrition Health and Aging, 12(6), 366–373.

    Article  CAS  Google Scholar 

  • Delanghe, J. R., Speeckaert, R., & Speeckaert, M. M. (2015). Behind the scenes of vitamin D binding protein: More than vitamin D binding. Best Practice & Research Clinical Endocrinology & Metabolism, 29(5), 773–786. doi:10.1016/j.beem.2015.06.006.

    Article  CAS  Google Scholar 

  • Dursun, E., Gezen-Ak, D., & Yilmazer, S. (2011). A novel perspective for Alzheimer’s disease: Vitamin D receptor suppression by amyloid-beta and preventing the amyloid-beta induced alterations by vitamin D in cortical neurons. Journal of Alzheimer’s Disease, 23(2), 207–219. doi:10.3233/JAD-2010-101377.

    CAS  PubMed  Google Scholar 

  • Evatt, M. L., DeLong, M. R., Khazai, N., Rosen, A., Triche, S., & Tangpricha, V. (2008). Prevalence of vitamin D insufficiency in patients with Parkinson disease and Alzheimer disease. Archives of Neurology, 65(10), 1348–1352.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eyles, D. W., Burne, T. H., & McGrath, J. J. (2013). Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease. Frontiers in Neuroendocrinology, 34(1), 47–64. doi:10.1016/j.yfrne.2012.07.001.

    Article  CAS  PubMed  Google Scholar 

  • Gatto, N. M., Sinsheimer, J. S., Cockburn, M., Escobedo, L. A., Bordelon, Y., & Ritz, B. (2015). Vitamin D receptor gene polymorphisms and Parkinson’s disease in a population with high ultraviolet radiation exposure. Journal of the Neurological Sciences, 352(1–2), 88–93. doi:10.1016/j.jns.2015.03.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gezen-Ak, D., Dursun, E., Bilgic, B., Hanagasi, H., Ertan, T., Gurvit, H., et al. (2012). Vitamin D receptor gene haplotype is associated with late-onset Alzheimer’s disease. The Tohoku Journal of Experimental Medicine, 228(3), 189–196.

    Article  CAS  PubMed  Google Scholar 

  • Gezen-Ak, D., Dursun, E., Ertan, T., Hanagasi, H., Gurvit, H., Emre, M., et al. (2007). Association between vitamin D receptor gene polymorphism and Alzheimer’s disease. The Tohoku Journal of Experimental Medicine, 212(3), 275–282.

    Article  CAS  PubMed  Google Scholar 

  • Gezen-Ak, D., Dursun, E., & Yilmazer, S. (2011). The effects of vitamin D receptor silencing on the expression of LVSCC-A1C and LVSCC-A1D and the release of NGF in cortical neurons. PLoS One, 6(3), e17553. doi:10.1371/journal.pone.0017553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gezen-Ak, D., Yilmazer, S., & Dursun, E. (2014). Why vitamin D in Alzheimer’s disease? The hypothesis. Journal of Alzheimer’s Disease, 40(2), 257–269. doi:10.3233/JAD-131970.

    CAS  PubMed  Google Scholar 

  • Goetz, C. G., Poewe, W., Rascol, O., Sampaio, C., Stebbins, G. T., Counsell, C., et al. (2004). Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: Status and recommendations. Movement Disorders, 19(9), 1020–1028. doi:10.1002/mds.20213.

    Article  PubMed  Google Scholar 

  • Han, X., Xue, L., Li, Y., Chen, B., & Xie, A. (2012). Vitamin D receptor gene polymorphism and its association with Parkinson’s disease in Chinese Han population. Neuroscience Letters, 525(1), 29–33. doi:10.1016/j.neulet.2012.07.033.

    Article  CAS  PubMed  Google Scholar 

  • Hekimsoy, Z., Dinc, G., Kafesciler, S., Onur, E., Guvenc, Y., Pala, T., et al. (2010). Vitamin D status among adults in the Aegean region of Turkey. BMC Public Health, 10, 782. doi:10.1186/1471-2458-10-782.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoehn, M. M., & Yahr, M. D. (1967). Parkinsonism: Onset, progression and mortality. Neurology, 17(5), 427–442.

    Article  CAS  PubMed  Google Scholar 

  • Hollenbach, E., Ackermann, S., Hyman, B. T., & Rebeck, G. W. (1998). Confirmation of an association between a polymorphism in exon 3 of the low-density lipoprotein receptor-related protein gene and Alzheimer’s disease. Neurology, 50, 1905–1907.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. S., Kim, Y. I., Song, C., Yoon, I., Park, J. W., Choi, Y. B., et al. (2005). Association of vitamin D receptor gene polymorphism and Parkinson’s disease in Koreans. Journal of Korean Medical Science, 20(3), 495–498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knekt, P., Kilkkinen, A., Rissanen, H., Marniemi, J., Sääksjärvi, K., & Heliövaara, M. (2010). Serum vitamin D and the risk of Parkinson disease. Archives of Neurology, 67(7), 808–811.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kostner, K., Denzer, N., Muller, C. S., Klein, R., Tilgen, W., & Reichrath, J. (2009). The relevance of vitamin D receptor (VDR) gene polymorphisms for cancer: A review of the literature. Anticancer Research, 29(9), 3511–3536.

    PubMed  Google Scholar 

  • Kumar, P. T., Antony, S., Nandhu, M. S., Sadanandan, J., Naijil, G., & Paulose, C. S. (2011). Vitamin D3 restores altered cholinergic and insulin receptor expression in the cerebral cortex and muscarinic M3 receptor expression in pancreatic islets of streptozotocin induced diabetic rats. The Journal of Nutritional Biochemistry, 22(5), 418–425. doi:10.1016/j.jnutbio.2010.03.010.

    Article  CAS  PubMed  Google Scholar 

  • Kuningas, M., Mooijaart, S. P., Jolles, J., Slagboom, P. E., Westendorp, R. G. J., & Van Heemst, D. (2009). VDR gene variants associate with cognitive function and depressive symptoms in old age. Neurobiology of Aging, 30, 466–473.

    Article  CAS  PubMed  Google Scholar 

  • Lehmann, D. J., Refsum, H., Warden, D. R., Medway, C., Wilcock, G. K., & Smith, D. A. (2011). The vitamin D receptor gene is associated with Alzheimer’s disease. Neuroscience Letters, 504, 79–82.

    Article  CAS  PubMed  Google Scholar 

  • Lin, C. H., Chen, K. H., Chen, M. L., Lin, H. I., & Wu, R. M. (2014). Vitamin D receptor genetic variants and Parkinson’s disease in a Taiwanese population. Neurobiology of Aging, 35(5), 1212.e11–1212.e13. doi:10.1016/j.neurobiolaging.2013.10.094.

    Article  CAS  Google Scholar 

  • Liu, H. X., Han, X., Zheng, X. P., Li, Y. S., & Xie, A. M. (2013). Association of vitamin D receptor gene polymorphisms with Parkinson disease. Zhonghua Yi Xue Yi Chuan Xue Za Zhi, 30(1), 13–16. doi:10.3760/cma.j.issn.1003-9406.2013.01.004.

    PubMed  Google Scholar 

  • Llewellyn, D. J., Lang, I. A., Langa, K. M., Muniz-Terrera, G., Phillips, C. L., Cherubini, A., et al. (2010). Vitamin D and risk of cognitive decline in elderly persons. Archives of Internal Medicine, 170(13), 1135–1141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llewellyn, D. J., Langa, K. M., & Lang, I. A. (2009). Serum 25-hydroxyvitamin D concentration and cognitive impairment. Journal of Geriatric Psychiatry and Neurology, 22(3), 188–195.

    Article  PubMed  Google Scholar 

  • Luedecking-Zimmer, E., DeKosky, S., Nebes, R., & Kamboh, I. (2003). Association of the 3′UTR transcription factor LBP-1c/CP2/LSF polymorphism with late-onset Alzheimer’s disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 117, 114–117.

    Article  Google Scholar 

  • Lurie, G., Wilkens, L. R., Thompson, P. J., McDuffie, K. E., Carney, M. E., Terada, K. Y., et al. (2007). Vitamin D receptor gene polymorphisms and epithelial ovarian cancer risk. Cancer Epidemiol Biomarkers & Prevention, 16(12), 2566–2571. doi:10.1158/1055-9965.EPI-07-0753.

    Article  CAS  Google Scholar 

  • Lv, Z., Tang, B., Sun, Q., Yan, X., & Guo, J. (2013). Association study between vitamin d receptor gene polymorphisms and patients with Parkinson disease in Chinese Han population. International Journal of Neuroscience, 123(1), 60–64. doi:10.3109/00207454.2012.726669.

    Article  CAS  PubMed  Google Scholar 

  • McCann, J., & Ames, B. N. (2008). Is there convincing biological or behavioral evidence linking vitamin D deficiency to brain dysfunction? The FASEB Journal, 22, 982–1001.

    Article  CAS  PubMed  Google Scholar 

  • Meamar, R., Shaabani, P., Tabibian, S. R., Aghaye Ghazvini, M. R., & Feizi, A. (2015). The effects of uric Acid, serum vitamin D3, and their interaction on Parkinson’s disease severity. Parkinson’s Disease, 2015, 463483. doi:10.1155/2015/463483.

    PubMed  PubMed Central  Google Scholar 

  • Moghaddasi, M., Mamarabadi, M., & Aghaii, M. (2013). Serum 25-hydroxyvitamin D3 concentration in Iranian patients with Parkinson’s disease. Iranian Journal of Neurology, 12(2), 56–59.

    PubMed  PubMed Central  Google Scholar 

  • Moon, M., Song, H., Hong, H. J., Nam, D. W., Cha, M. Y., Oh, M. S., et al. (2013). Vitamin D-binding protein interacts with Abeta and suppresses Abeta-mediated pathology. Cell Death and Differentiation, 20(4), 630–638. doi:10.1038/cdd.2012.161.

    Article  CAS  PubMed  Google Scholar 

  • Peeyush Kumar, T., Paul, J., Antony, S., & Paulose, C. S. (2011). Expression of cholinergic, insulin, vitamin D receptors and GLUT 3 in the brainstem of streptozotocin induced diabetic rats: Effect of treatment with vitamin D(3). Neurochemical Research, 36(11), 2116–2126. doi:10.1007/s11064-011-0536-9.

    Article  CAS  PubMed  Google Scholar 

  • Peeyush, K. T., Savitha, B., Sherin, A., Anju, T. R., Jes, P., & Paulose, C. S. (2010). Cholinergic, dopaminergic and insulin receptors gene expression in the cerebellum of streptozotocin-induced diabetic rats: Functional regulation with vitamin D3 supplementation. Pharmacology, Biochemistry and Behavior, 95(2), 216–222. doi:10.1016/j.pbb.2010.01.008.

    Article  CAS  PubMed  Google Scholar 

  • Petersen, M. S., Bech, S., Christiansen, D. H., Schmedes, A. V., & Halling, J. (2014). The role of vitamin D levels and vitamin D receptor polymorphism on Parkinson’s disease in the Faroe Islands. Neuroscience Letters, 561, 74–79. doi:10.1016/j.neulet.2013.12.053.

    Article  CAS  PubMed  Google Scholar 

  • Pludowski, P., Grant, W. B., Bhattoa, H. P., Bayer, M., Povoroznyuk, V., Rudenka, E., et al. (2014). Vitamin D status in central Europe. International Journal of Endocrinology, 2014, 589587. doi:10.1155/2014/589587.

    Article  PubMed  PubMed Central  Google Scholar 

  • Poduslo, S. E., & Yin, X. (2001). Chromosome 12 and late onset Alzheimer’s disease. Neuroscience Letters, 310, 188–190.

    Article  CAS  PubMed  Google Scholar 

  • Sachs, M. C., Shoben, A., Levin, G. P., Robinson-Cohen, C., Hoofnagle, A. N., Swords-Jenny, N., et al. (2013). Estimating mean annual 25-hydroxyvitamin D concentrations from single measurements: The Multi-Ethnic Study of Atherosclerosis. American Journal of Clinical Nutrition, 97(6), 1243–1251. doi:10.3945/ajcn.112.054502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato, Y., Honda, Y., Iwamoto, J., Kanoko, T., & Satoh, K. (2005). Abnormal bone and calcium metabolism in immobilized Parkinson’s disease patients. Movement Disorders, 20, 1598–1603.

    Article  PubMed  Google Scholar 

  • Sato, Y., Kaji, M., Tsuru, T., & Oizumi, K. (2001). Risk factors for hip fracture among elderly patients with Parkinson’s disease. Journal of the Neurological Sciences, 182, 89–93.

    Article  CAS  PubMed  Google Scholar 

  • Sato, Y., Kikuyama, M., & Oizumi, K. (1997). High prevalence of vitamin D deficiency and reduced bone mass in Parkinson’s disease. Neurology, 49, 1273–1278.

    Article  CAS  PubMed  Google Scholar 

  • Smith, M. P., Fletcher-Turner, A., Yurek, D. M., & Cass, W. A. (2006). Calcitriol protection against dopamine loss induced by intracerebroventricular administration of 6-hydroxydopamine. Neurochemical Research, 31(4), 533–539. doi:10.1007/s11064-006-9048-4.

    Article  CAS  PubMed  Google Scholar 

  • Sonnenberg, J., Luine, V. N., Krey, L. C., & Christakos, S. (1986). 1,25-Dihydroxyvitamin D3 treatment results in increased choline acetyltransferase activity in specific brain nuclei. Endocrinology, 118(4), 1433–1439.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, M., Yoshioka, M., Hashimoto, M., Murakami, M., Kawasaki, K., Noya, M., et al. (2012). 25-Hydroxyvitamin D, vitamin D receptor gene polymorphisms, and severity of Parkinson’s disease. Movement Disorders, 27(2), 264–271. doi:10.1002/mds.24016.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, M., Yoshioka, M., Hashimoto, M., Murakami, M., Noya, M., Takahashi, D., et al. (2013). Randomized, double-blind, placebo-controlled trial of vitamin D supplementation in Parkinson disease. American Journal of Clinical Nutrition, 97(5), 1004–1013. doi:10.3945/ajcn.112.051664.

    Article  CAS  PubMed  Google Scholar 

  • Torok, R., Torok, N., Szalardy, L., Plangar, I., Szolnoki, Z., Somogyvari, F., et al. (2013). Association of vitamin D receptor gene polymorphisms and Parkinson’s disease in Hungarians. Neuroscience Letters, 551, 70–74. doi:10.1016/j.neulet.2013.07.014.

    Article  CAS  PubMed  Google Scholar 

  • Uitterlinden, A. G., Fang, Y., Van Meurs, J. B., Pols, H. A., & Van Leeuwen, J. P. (2004). Genetics and biology of vitamin D receptor polymorphisms. Gene, 338(2), 143–156.

    Article  CAS  PubMed  Google Scholar 

  • van der Meer, I. M., Middelkoop, B. J., Boeke, A. J., & Lips, P. (2011). Prevalence of vitamin D deficiency among Turkish, Moroccan, Indian and sub-Sahara African populations in Europe and their countries of origin: An overview. Osteoporosis International, 22(4), 1009–1021. doi:10.1007/s00198-010-1279-1.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Hara, K., Van Baaren, J. M., Price, J. C., Beecham, G. W., Gallins, P. J., et al. (2012). Vitamin D receptor and Alzheimer’s disease: A genetic and functional study. Neurobiology of Aging, 33(8), 1844.e1–1844.e9. doi:10.1016/j.neurobiolaging.2011.12.038.

    Article  CAS  Google Scholar 

  • Wang, T. J., Zhang, F., Richards, J. B., Kestenbaum, B., van Meurs, J. B., Berry, D., et al. (2010). Common genetic determinants of vitamin D insufficiency: A genome-wide association study. Lancet, 376(9736), 180–188. doi:10.1016/S0140-6736(10)60588-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkins, C. H., Sheline, Y. I., Roe, C. M., Birge, S. J., & Morris, J. C. (2006). Vitamin D deficiency is associated with low mood and worse cognitive performance in older adults. The American Journal of Geriatric Psychiatry, 14, 1032–1040.

    Article  PubMed  Google Scholar 

  • Zhang, J., Sokal, I., Peskind, E. R., Quinn, J. F., Jankovic, J., Kenney, C., et al. (2008). CSF multianalyte profile distinguishes Alzheimer and Parkinson diseases. American Journal of Clinical Pathology, 129(4), 526–529. doi:10.1309/W01Y0B808EMEH12L.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The study is supported by the Research Fund of Istanbul University (Project No.: ONAP-21712).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Duygu Gezen-Ak or Erdinç Dursun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Participants in the present study were treated according to the ethical principles for medical research involving human participants described in the World Medical Association’s Declaration of Helsinki, and the study was approved by the Ethics Committee of Istanbul University.

Informed consent

Signed informed consent was obtained from all study participants.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s12017-016-8426-6.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gezen-Ak, D., Alaylıoğlu, M., Genç, G. et al. GC and VDR SNPs and Vitamin D Levels in Parkinson’s Disease: The Relevance to Clinical Features. Neuromol Med 19, 24–40 (2017). https://doi.org/10.1007/s12017-016-8415-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-016-8415-9

Keywords

Navigation