Skip to main content
Log in

Overview of Amorphous and Nanocrystalline Magnetocaloric Materials Operating Near Room Temperature

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The observation of a giant magnetocaloric effect in Gd5Ge1.9Si2Fe0.1 has stimulated the magnetocaloric research in the last two decades. However, the high price of Gd and its proclivity to corrosion of these compounds have prevented their commercial use. To reduce raw materials cost, transition metal-based alloys are investigated to replace rare earth-based materials. Environmental considerations, substitution for scarce and strategic elements, and cost considerations all speak to potential contributions of these new materials to sustainability. Fe-based soft amorphous alloys are believed to be promising magnetic refrigerants. Efforts in improving the refrigeration capacity (RC) of refrigerants mainly rely on broadening the magnetic entropy change. One promising technique is to couple two phases of magnetic materials with desirable properties. Second is the investigation of nanoparticle synthesis routes, with ball milling being the most widely used one. The motivation for the nanoparticles synthesis is rooted in their inherent tendency to have distributed exchange coupling, which will broaden the magnetic entropy curve. As proven with the cost analysis, the focus is believed to shift from improving the RC of refrigerants toward finding the most economically advantageous magnetic refrigerant with the highest performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. K.A. Gschneidner Jr. and V.K. Pecharsky, Ann. Rev. Mater. Sci. 30, 387 (2000).

    Article  Google Scholar 

  2. E. Brück, O. Tegus, L. Zhang, X.W. Li, F.R. de Boer, and K.H.J. Buschow, J. Alloy. Compd. 383, 32 (2004).

    Article  Google Scholar 

  3. M. Untersuchungen and E. Warburg, Ann. Phys. (Leipzig) 13, 141 (1881).

    Google Scholar 

  4. W.F. Giaque, J. Am. Chem. Soc. 49, 1870 (1927).

    Article  Google Scholar 

  5. P. Debye, Ann. Phys. (Leipzig) 81, 1154 (1926).

    MATH  Google Scholar 

  6. R. McMichael, R.D. Shull, L.J. Swartzendruber, L.H. Bennett, and R.E. Watson, J. Magn. Magn. Mater. 111, 29 (1992).

    Article  Google Scholar 

  7. A.M. Tishin and Y.I. Spichkin, The Magnetocaloric Effect and its Applications (Bristol, UK: Institute of Physics Publishers, 2003).

    Book  Google Scholar 

  8. V.K. Pecharsky and K.A. Gschneidner Jr, Phys. Rev. Lett. 78, 4494 (1997).

    Article  Google Scholar 

  9. V. Provenzano, A.J. Shapiro, and R.D. Shull, Nature 429, 853 (2004).

    Article  Google Scholar 

  10. T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, and A. Planes, Nat. Mater. 4, 450 (2005).

    Article  Google Scholar 

  11. I. Škorvánek and J. Kovác, Czech J. Phys. 54, D189 (2004).

    Article  Google Scholar 

  12. V. Franco, J.S. Blázquez, C.F. Conde, and A. Conde, Appl. Phys. Lett. 88, 042505 (2006).

    Article  Google Scholar 

  13. V. Franco, J.M. Borrego, C.F. Conde, and A. Conde, J. Appl. Phys. 100, 083903 (2006).

    Article  Google Scholar 

  14. J.J. Ipus, J.S. Blázquez, V. Franco, A. Conde, and L.F. Kiss, J. Appl. Phys. 105, 123922 (2009).

    Article  Google Scholar 

  15. A. Arrott and J.E. Noakes, Phys. Rev. Lett. 19, 786 (1967).

    Article  Google Scholar 

  16. V. Franco and A. Conde, Int. J. Refrig. 33, 465 (2010).

    Article  Google Scholar 

  17. H. Oesterreicher and F.T. Parker, J. Appl. Phys. 55, 4334 (1984).

    Article  Google Scholar 

  18. V. Franco, J.S. Blázquez, and A. Conde, Appl. Phys. Lett. 89, 222512 (2006).

    Google Scholar 

  19. J.S. Kouvel and M.E. Fisher, Phys. Rev. 136, A1626 (1964).

    Article  Google Scholar 

  20. K.A. Gallagher, M.A. Willard, V.N. Zabenkin, D.E. Laughlin, and M.E. McHenry, J. Appl. Phys. 85, 5130 (1999).

    Article  Google Scholar 

  21. N.J. Jones, H. Ucar, J.J. Ipus, M.E. McHenry, and D.E. Laughlin, J. Appl. Phys. 111, 07A334 (2012).

    Article  Google Scholar 

  22. M.E. Wood and W.H. Potter, Cryogenics 25, 667 (1985).

    Article  Google Scholar 

  23. S. Son, M. Taheri, E. Carpenter, V.G. Harris, and M.E. McHenry, J. Appl. Phys. 91, 7589 (2002).

    Article  Google Scholar 

  24. M.E. McHenry, M.A. Willard, and D.E. Laughlin, Prog. Mater. Sci. 44, 291 (1998).

    Article  Google Scholar 

  25. C. Suryanarayana, Prog. Mater. Sci. 46, 1 (2001).

    Article  Google Scholar 

  26. C.C. Koch, O.B. Cavin, G.C. McKamey, and J.O. Scarbrough, Appl. Phys. Lett. 43, 1071 (1983).

    Article  Google Scholar 

  27. J. Eckert, L. Schultz, and K. Urban, Appl. Phys. Lett. 55, 117 (1989).

    Article  Google Scholar 

  28. E. Hellstem and L. Schultz, J. Appl. Phys. 63, 1408 (1988).

    Article  Google Scholar 

  29. D.M. Rajkumar, M. Manivel Raja, R. Gopalan, and V. Chandrasekaran, J. Magn. Magn. Mater. 320, 1479 (2008).

    Article  Google Scholar 

  30. D. Wang, K. Peng, B. Gu, Z. Han, S. Tang, W. Qin, and Y. Du, J. Alloys Compd. 358, 312 (2003).

    Article  Google Scholar 

  31. I. Skorvanek and J. Kovac, Czech J. Phys. 54, D189 (2004).

    Article  Google Scholar 

  32. S. Atalay, H. Gencer, and V.S. Kolat, J. Non-Cryst. Solids 351, 2373 (2005).

    Article  Google Scholar 

  33. S.G. Min, K.S. Kim, S.C. Yu, H.S. Suh, and S.W. Lee, J. Appl. Phys. 97, 10M310 (2005).

    Article  Google Scholar 

  34. F. Johnson and R.D. Shull, J. Appl. Phys. 99, 08909 (2006).

    Google Scholar 

  35. V. Franco, J.S. Blázquez, and A. Conde, J. Appl. Phys. 100, 064307 (2006).

    Article  Google Scholar 

  36. V. Franco, J.S. Blázquez, M. Millán, J.M. Borrego, C.F. Conde, and A. Conde, J. Appl. Phys. 101, 09C503 (2007).

    Article  Google Scholar 

  37. V. Franco, C.F. Conde, J.S. Blázquez, and A. Conde, J. Appl. Phys. 101, 093903 (2007).

    Article  Google Scholar 

  38. J.Y. Law, R.V. Ramanujan, and V. Franco, J. Alloy. Compd. 508, 14 (2010).

    Article  Google Scholar 

  39. R. Caballero-Flores, V. Franco, A. Conde, K.E. Knipling, and M.A. Willard, Appl. Phys. Lett. 96, 182506 (2010).

    Article  Google Scholar 

  40. F.X. Hu, M. Ilyn, A.M. Tishin, J.R. Sun, and G.J. Wang, J. Appl. Phys. 93, 5503 (2003).

    Article  Google Scholar 

  41. S. Fujieda, A. Fujita, and K. Fukamichi, Appl. Phys. Lett. 81, 1276 (2002).

    Article  Google Scholar 

  42. P. Gorría, J.L. Sánchez-Lamazares, P. Alvarez, M.J. Pérez, J. Sanchez-Marcos, and J.A. Blanco, J. Phys. D Appl. Phys. 41, 192003 (2008).

    Article  Google Scholar 

  43. Y.V.B. de Santanna, M.A.C. de Melo, I.A. Santos, A.A. Coelho, S. Gama, and L.F. Cótica, Solid State Commun. 148, 289 (2008).

    Article  Google Scholar 

  44. J.J. Ipus, J.S. Blázquez, V. Franco, and A. Conde, J. Alloy. Compd. 496, 7 (2010).

    Article  Google Scholar 

  45. H. Ucar, J.J. Ipus, M.E. McHenry, and D.E. Laughlin (unpublished work, 2012).

  46. J.J. Ipus, P. Herre, P. Ohodnicki, and M.E. McHenry, J. Appl. Phys. 111, 07A323 (2012).

    Article  Google Scholar 

  47. L.J. Swartzendruber, V.P. Itkin, and C.B. Alcock, J. Phase Equilib. 12, 288 (1991).

    Article  Google Scholar 

  48. K.J. Miller, M. Sofman, K. McNerny, and M.E. McHenry, J. Appl. Phys. 107, 09A305 (2010).

    Article  Google Scholar 

  49. K.L. McNerny, Y. Kim, D.E. Laughlin, and M.E. McHenry, J. Appl. Phys. 107, 09A312 (2010).

    Article  Google Scholar 

  50. W. Dagula and O. Tegus, IEEE Trans. Magn. 41, 10 (2005).

    Article  Google Scholar 

  51. J.J. Ipus, H. Ucar, and M.E. McHenry, IEEE Trans. Magn. 47, 10 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

H.U., M.E.M., and D.E.L. acknowledge support of the NSF through Grant No. DMR #0804020. J.J.I and V.F. acknowledge the support from the Spanish Ministry of Science and Innovation and EU FEDER (Project MAT 2010-20537), the PAI of the Regional Government of Andalucía (Project P10-FQM-6462) and the United States Office of Naval Research (Project N00014-11-1-0311).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huseyin Ucar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ucar, H., Ipus, J.J., Franco, V. et al. Overview of Amorphous and Nanocrystalline Magnetocaloric Materials Operating Near Room Temperature. JOM 64, 782–788 (2012). https://doi.org/10.1007/s11837-012-0349-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0349-6

Navigation