Skip to main content
Log in

A meta-analysis of the effects of galling insects on host plant secondary metabolites

  • Review Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

The idea that galling insects actively manipulate host plant chemistry has been previously documented but has not been quantified across a range of galler and host plant taxa. We present the first quantitative review of the relationship between insect galling and levels of secondary metabolites in host plants. Using meta-analytic techniques, we examined this relationship across 40 galler and host plant species combinations. We found that galling insects are associated with significantly higher levels of tannins and phenolics; however, no difference was found for volatiles. Hymenoptera, Diptera and Hemiptera were associated with higher levels of secondary metabolites; however, only Hymenoptera was significant. The climatic zone of the study area did not explain significant differences in gall-induced secondary metabolites. Overall the results show that the ability of galling insects to manipulate host plant secondary chemistry is widespread across insect and plant taxa. The evolutionary success of galling insects may be in part due to this unique ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrahamson WG, McCrea KD, Whitwell AJ, Vernieri LA (1991) The role of phenolics in goldenrod ball gall resistance and formation. Biochem Syst Ecol 19:615–622

    Article  CAS  Google Scholar 

  • Abrahamson WG, Hunter MD, Melika G, Price PW (2003) Cynipid gall-wasp communities correlate with oak chemistry. J Chem Ecol 29:209–223

    Article  CAS  PubMed  Google Scholar 

  • Aguilar R, Ashworth A, Galetto L, Aizen MA (2006) Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecol Lett 9:968–980

    Article  PubMed  Google Scholar 

  • Allison SD, Schultz JC (2005) Biochemical responses of chestnut oak to a galling cynipid. J Chem Ecol 31:151–166

    Article  CAS  PubMed  Google Scholar 

  • Atsatt PR (1981) Lycaenid butterflies and ants. Selection for enemy free space. Am Nat 118:638–654

    Article  Google Scholar 

  • Bailey JK, Wooley SC, Lindroth RL, Whitham TG (2006) Importance of species interactions to community heritability: a genetic basis to trophic-level interactions. Ecol Lett 9:78–85

    PubMed  Google Scholar 

  • Barbehenn R, Cheek S, Gasperut A, Lister S, Maben R (2005) Phenolic compounds in red oak and sugar maple leaves have prooxidant activities in the midgut fluids of Malacosoma disstria and Orgyia leucostigma caterpillars. J Chem Ecol 31:969–988

    Article  CAS  PubMed  Google Scholar 

  • Butterill PT, Novotny V (2015) Gall-forming insects in a lowland tropical rainforest: low species diversity in an extremely specialised guild. Ecol Entomol 40:409–419

    Article  Google Scholar 

  • Carneiro MA, Branco CA, Braga CD, Almada ED, Costa MM, Maia VC, Fernandes GW (2009) Are gall midge species (Diptera, Cecidomyiidae) host-plant specialists? Rev Bras Entomol 53:365–378

    Article  Google Scholar 

  • Coley PD, Bryant JP, Chapin FS (1985) Resource availability and plant antiherbivore defence. Science 230:895–899

    Article  CAS  PubMed  Google Scholar 

  • Connor EF, Bartlett L, O’Toole S, Byrd S, Biskar K, Orozco J (2012) The mechanism of gall induction makes galls red. Arthropod Plant Interact 6:489–495

    Article  Google Scholar 

  • Cooper WR, Rieske LK (2009) Woody stem galls interact with foliage to affect community associations. Environ Entomol 38:417–424

    Article  CAS  PubMed  Google Scholar 

  • Cooper HM, Hegdes LV, Valentine JC (2009) The handbook of research synthesis and meta-analysis. Russel Sage Foundation Publications, New York

    Google Scholar 

  • Cornelissen TG, Fernandes GW (2001) Defence, growth and nutrient allocation in the tropical shrub Bauhinia brevipes (Leguminosae). Austral Ecol 26:246–253

    Article  Google Scholar 

  • Cornelissen TG, Fernandes GW, Coelho MS (2011) Induced responses in the neotropical shrub Bauhinia brevipes Vogel: does early season herbivory function as cue to plant resistance? Arthropod Plant Interact 5:245–253

    Article  Google Scholar 

  • Cornell H (1983) The secondary chemistry and complex morphology of galls formed by the Cynipinae (Hymenoptera): why and how? Am Midl Nat 110:225–234

    Article  Google Scholar 

  • Coruh S, Ercisli S (2010) Interactions between galling insects and plant total phenolic contents in Rosa canina L. genotypes. Sci Res Essays 5:1935–1937

    Google Scholar 

  • Crutsinger GM, Habenicht MN, Classen AT, Schweitzer JA, Sanders NJ (2008) Galling by Rhopalomyia solidaginis alters Solidago altissima architecture and litter nutrient dynamics in an old-field ecosystem. Plant Soil 303:95–103

    Article  CAS  Google Scholar 

  • Damasceno FC, Nicolli KP, Caramão EB, Soares GL, Zini CA (2010) Changes in the volatile organic profile of Schinus polygamus (Anacardiaceae) and Baccharis spicata (Asteraceae) induced by galling psyllids. J Braz Chem Soc 21:556–563

    Article  CAS  Google Scholar 

  • Delvas N, Bauce É, Labbé C, Ollevier T, Bélanger R (2011) Phenolic compounds that confer resistance to spruce budworm. Entomol Exp Appl 141:35–44

    Article  CAS  Google Scholar 

  • Detoni ML, Vasconcelos EG, Rust NM, Isaias RS, Soares GG (2011) Seasonal variation of phenolic content in galled and non-galled tissues of Calliandra brevipes Benth (Fabaceae: Mimosoidae). Acta Bot Bras 25:601–604

    Article  Google Scholar 

  • Ehrlich P, Raven P (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608

    Article  Google Scholar 

  • Feeny P (1970) Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51:565–581

    Article  Google Scholar 

  • Feeny P (1976) Plant apparency and chemical defence. In: Wallace J, Mansell R (eds) Biochemical interaction between plants and insects. Plenum Press, New York, pp 1–40

    Google Scholar 

  • Formiga AT, de Gonçalves SJ, Soares GLG, Isaias RMS (2009) Relações entre o teor de fenóis totais e o ciclo das galhas de Cecidomyiidae em Aspidosperma spruceanum Müll. Arg. (Apocynaceae). Acta Bot Bras 23:93–99

    Article  Google Scholar 

  • Foss LK, Rieske LK (2004) Stem galls affect oak foliage with potential consequences for herbivory. Ecol Entomol 29:273–280

    Article  Google Scholar 

  • Frost CJ, Dean JM, Smyers EC, Mescher MC, Carlson JE, De Moraes CM, Tooker JF (2012) A petiole-galling insect herbivore decelerates leaf lamina litter decomposition rates. Funct Ecol 26:628–636

    Article  Google Scholar 

  • Furlan CM, Salatino A, Domingos M (2004) Influence of air pollution on leaf chemistry, herbivore feeding and gall frequency on Tibouchina pulchra leaves in Cubatao (Brazil). Biochem Syst Ecol 32:253–263

    Article  CAS  Google Scholar 

  • Fürstenberg-Hägg J, Zagrobelny M, Bak S (2013) Plant defence against insect herbivores. Int J Mol Sci 14:10242–10297

    Article  PubMed  PubMed Central  Google Scholar 

  • Gagné RJ, Jaschhof M (2014) A catalog of the Cecidomyiidae (Diptera) of the world, 3rd edn. Digital version 2. http://www.ars.usda.gov/SP2UserFiles/Place/12454900/Gagne_2014_World_Cecidomyiidae_Catalog_3rd_Edition.pdf

  • Gonçalves-Alvim SJ, Collevatti RG, Fernandes GW (2004) Effects of genetic variability and habitat of Qualea parviflora (Vochysiaceae) on herbivory by free-feeding and gall-forming insects. Ann Bot 94:259–268

    Article  PubMed  PubMed Central  Google Scholar 

  • Gopichandran R, Peter AJ, Subramaniam VR (1992) Age-correlated biochemical profiles of thrips galls in relation to population density of thrips. J Nat Hist 26:609–619

    Article  Google Scholar 

  • Guimarães AA, Bizarri CB, Barbosa LS, Nakamura MJ, Ramos MS, Vieira AM (2013) Characterization of the effects of leaf galls of Clusiamyia nitida (Cecidomyiidae) on Clusia lanceolata Cambess. (Clusiaceae): anatomical aspects and chemical analysis of essential oil. Flora 208:165–173

    Article  Google Scholar 

  • Gurevitch J, Hedges LV (1999) Statistical issues in ecological meta-analyses. Ecology 80:1142–1149

    Article  Google Scholar 

  • Hardy NB, Cook LG (2010) Gall induction in insects: evolutionary dead-end or speciation driver? BMC Evol Biol 10:257

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartley S (1998) The chemical composition of plant galls: are levels of nutrients and secondary compounds controlled by the gall-former? Oecologia 113:492–501

    Article  CAS  PubMed  Google Scholar 

  • Hartley S, Lawton J (1992) Host-plant manipulation by gall-insects: a test of the nutrition hypothesis. J Anim Ecol 61:113–119

    Article  Google Scholar 

  • Hedges LV, Olkin I (1985) Statistical methods for meta-analysis. Academic Press, Orlando

    Google Scholar 

  • Helms AM, De Moraes C, Tooker JF, Mescher MC (2013) Exposure of Solidago altissima plants to volatile emissions of an insect antagonist (Eurosta solidaginis) deters subsequent herbivory. PNAS 110:199–204

    Article  CAS  PubMed  Google Scholar 

  • Hjältén J, Niemi L, Wennström A, Ericson L, Roininen H, Julkunen-Tiitto R (2007) Variable responses of natural enemies to Salix triandra phenotypes with different secondary chemistry. Oikos 116:751–758

    Article  Google Scholar 

  • Kolehmainen J, Roininen H, Julkunen-Tiitto R, Tahvanainen J (1994) Importance of phenolic glucosides in host selection of shoot galling sawfly, Euura amerinae, on Salix pentandra. J Chem Ecol 20:2455–2466

    Article  CAS  PubMed  Google Scholar 

  • Künkler N, Brandl R, Brändle M (2013) Changes in clonal poplar leaf chemistry caused by stem galls alter herbivory and leaf litter decomposition. PLOS ONE 8:e79994

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin JS, Martin MM (1982) Tannin assays in ecological studies: lack of correlation between phenolics, proanthocyanidins and protein-precipitating constituents in mature foliage of six oak species. Oecologia 54:205–211

    Article  PubMed  Google Scholar 

  • McKinnon ML, Quiring DT, Bauce E (1999) Influence of tree growth rate, shoot size and foliar chemistry on the abundance and performance of a galling adelgid. Funct Ecol 13:859–867

    Article  Google Scholar 

  • Moilanen J, Karonen M, Tähtinen P, Jacquet R, Quideau S, Salminen JP (2016) Biological activity of ellagitannins: effects as anti-oxidants, pro-oxidants and metal chelators. Phytochemistry 125:65–72

    Article  CAS  PubMed  Google Scholar 

  • Mole S, Waterman PG (1987) A critical analysis of techniques for measuring tannins in ecological studies. I. Techniques for chemically defining tannins. Oecologia 72:137–147

    Article  CAS  PubMed  Google Scholar 

  • Moles AT, Bonser SP, Poore AGB, Wallis IR, Foley WJ (2011) Assessing the evidence for latitudinal gradients in plant defence and herbivory. Funct Ecol 25:380–388

    Article  Google Scholar 

  • Motta LB, Kraus JE, Salatino A, Salatino MF (2005) Distribution of metabolites in galled and non-galled foliar tissues of Tibouchina pulchra. Biochem Syst Ecol 33:971–981

    Article  CAS  Google Scholar 

  • Nakamura M, Miyamoto Y, Ohgushi T (2003) Gall initiation enhances the availability of food resources for herbivorous insects. Funct Ecol 17:851–857

    Article  Google Scholar 

  • Nyman T, Julkunen-Tiitto R (2000) Manipulation of the phenolic chemistry of willows by gall-inducing sawflies. Proc Natl Acad Sci USA 97:13184–13187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer R (1999) Detecting publication bias in meta-analyses: a case study of fluctuating asymmetry and sexual selection. Am Nat 154:220–233

    Google Scholar 

  • Pascual-Alvarado E, Cuevas-Reyes P, Quesada M, Oyama K (2008) Interactions between galling insects and leaf-feeding insects: the role of plant phenolic compounds and their possible interference with herbivores. J Trop Ecol 24:329–336

    Article  Google Scholar 

  • Price PW, Fernandes GW, Waring GL (1987) Adaptive nature of insect galls. Environ Entomol 16:15–24

    Article  Google Scholar 

  • Redfern M (2011) Plant galls. HarperCollins Publishers, London

    Google Scholar 

  • Rehill BJ, Schultz JC (2012) Hormaphis hamamelidis fundatrices benefit by manipulating phenolic metabolism of their host. J Chem Ecol 38:496–498

    Article  CAS  PubMed  Google Scholar 

  • Rohatgi A (2015) WebPlotDigitizer. http://arohatgi.info/WebPlotDigitizer/. Accessed 28 Jan 2015

  • Ronquist F, Nieves-Aldrey J, Buffington M, Liu Z, Liljeblad J, Nylander J (2015) Phylogeny, evolution and classification of gall wasps: the plot thickens. PLOS ONE 10:e0123301

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenberg MS (2005) The file-drawer problem revisited: a general weighted method for calculating fail-safe numbers in meta-analysis. Evolution 59:464–468

    Article  PubMed  Google Scholar 

  • Roskam JC (1985) Evolutionary patterns in gall midge-host plant associations (Diptera, Cecidomyiidae). Tijschr Entomol 128:193–213

    Google Scholar 

  • Roskam JC (1992) Evolution of the gall-inducing guild. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University Press, New York, pp 34–48

    Google Scholar 

  • Rostás M, Maag D, Ikegami M, Inbar M (2013) Gall volatiles defend aphids against a browsing mammal. BMC Evol Biol 13:193

    Article  PubMed  PubMed Central  Google Scholar 

  • Schultz JC (1988) Many factors influence the evolution of herbivore diets, but plant chemistry is central. Ecology 69:896–897

    Article  Google Scholar 

  • Schweitzer JA, Bailey JK, Hart SC, Wimp GM, Chapman SK, Whitham TG (2005) The interaction of plant genotype and herbivory decelerate leaf litter decomposition and alter nutrient dynamics. Oikos 110:133–145

    Article  CAS  Google Scholar 

  • Scifinder (2015) Chemical abstracts service. Columbus, OH

    Google Scholar 

  • Soetens P, Rowell-Rahier M, Pasteels J (1991) Influence of phenolglucosides and trichome density on the distribution of insect herbivores on willows. Entomol Exp Appl 59:175–187

    Article  CAS  Google Scholar 

  • Sugiura S, Yamazaki K, Osono T (2006) Consequences of gall tissues as a food resource for a tortricid moth attacking cecidomyiid galls. Can Entomol 138:390–398

    Article  Google Scholar 

  • Taper M, Case T (1987) Interactions between oak tannins and parasite community structure: unexpected benefits of tannins to cynipid gall-wasps. Oecologia 71:254–261

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Tooker JF, De Moraes CM (2007) Feeding by the Hessian fly [Mayetiola destructor (Say)] larvae does not induce plant indirect defences. Ecol Entomol 32:473–477

    Article  Google Scholar 

  • Tooker JF, Helms AM (2014) Phytohormone dynamics associated with gall insects, and their potential role in the evolution of the gall-inducing habit. J Chem Ecol 40:742–753

    Article  CAS  PubMed  Google Scholar 

  • Tooker JF, Koenig WA, Hanks LM (2002) Altered host plant volatiles are proxies for sex pheromones in the gall wasp Antistrophus rufus. PNAS USA 99:15486–15491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tooker JF, Rohr JR, Abrahamson WG, De Moraes CM (2008) Gall insects can avoid and alter indirect plant defenses. New Phytol 178:657–671

    Article  CAS  PubMed  Google Scholar 

  • Torres-Gurrola G, Delgado-Lamas G, Espinosa-Garcia F (2011) The foliar chemical profile of criollo avocado, Persea americana var. drymifolia (Lauraceae), and its relationship with the incidence of a gall-forming insect, Trioza anceps (Triozidae). Biochem Syst Ecol 39:102–111

    Article  CAS  Google Scholar 

  • Turlings TJ, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253

    Article  CAS  PubMed  Google Scholar 

  • Valladares GR, Zapata A, Zygaldo J, Banchio E (2002) Phytochemical induction by herbivores could affect quality of essential oils from aromatic plants. J Agric Food Chem 50:4059–4061

    Article  CAS  PubMed  Google Scholar 

  • Viechtbauer W (2010) Conducting meta-analyses in R with the metafor package. J Stat Softw 36:1–48

    Article  Google Scholar 

  • War AR, Sharma HC, Paulraj MG, War MY, Ignacimuthu S (2011) Herbivore induced plant volatiles: their role in plant defense for pest management. Plant Signal Behav 6:1973–1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7:1306–1313

    Article  PubMed  PubMed Central  Google Scholar 

  • Wetzel WC, Screen R, Li I, McKenzie J, Phillips K, Cruz M, Zhang W, Greene A, Lee E, Singh N, Tran C, Yang L (2015) Ecosystem engineering by a gall-forming wasp indirectly suppresses density and diversity of herbivores on oak trees. Ecology. doi:10.1890/15-1347.1

    Google Scholar 

  • Zucker WV (1982) How aphids choose leaves: the roles of phenolics in host selection by a galling aphid. Ecology 63:972–981

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Sarah Maunsell and Legi Sam for suggestions and comments during the preparation of this manuscript, and to Nigel Stork and Luke Robertson for thoughtful reviews. This study was funded by the Griffith University School of Environment PhD program and the Australian Postgraduate Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Casey R. Hall.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: John F. Tooker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 291 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hall, C.R., Carroll, A.R. & Kitching, R.L. A meta-analysis of the effects of galling insects on host plant secondary metabolites. Arthropod-Plant Interactions 11, 463–473 (2017). https://doi.org/10.1007/s11829-016-9486-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-016-9486-0

Keywords

Navigation