Skip to main content

Advertisement

Log in

Effect of the mycotoxin deoxynivalenol on grain aphid Sitobion avenae and its parasitic wasp Aphidius ervi through food chain contamination

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

We investigated the influence of the Fusarium mycotoxin deoxynivalenol on the English grain aphid Sitobion avenae (Hemiptera: Aphididae) and its parasitic wasp Aphidius ervi (Hymenoptera: Braconidae) using in vitro laboratory experiments. In this tritrophic interaction, deoxynivalenol caused lethal (declined survival) and sublethal (prolonged nymphal development and reduced reproduction) effects on S. avenae aphids and consequentially led to a decreased production of parasitoid offspring resulting from parasitized deoxynivalenol-contaminated aphids. This paper highlights that the presence of mycotoxins should be considered in environmental risk assessment tests because they may alter the efficiency of biological control agents such as parasitoids through food chain contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Al Dobai S, Praslicka J, Mistina T (1999) Parasitoids and hyperparasitoids of cereal aphids (Homoptera, Aphididae) on winter wheat in Slovakia. Biologia 54:573–580

    Google Scholar 

  • Audenaert K, Van Broeck R, Bekaert B, De Witte F, Heremans B, Messens K, Hofte M, Haesaert G (2009) Fusarium head blight (FHB) in Flanders: population diversity, inter-species associations and DON contamination in commercial winter wheat varieties. Eur J Plant Pathol 125:445–458

    Article  Google Scholar 

  • Barbosa P, Gross P, Kemper J (1991) Influence of plant allelochemicals on the tobacco hornworm and its parasitoid, Cotesia congregata. Ecology 72:1567–1575

    Article  CAS  Google Scholar 

  • Barczak T, Debek-Jankowska A, Bennewicz J (2014) Primary parasitoid and hyperparasitoid guilds (Hymenoptera) of grain aphid (Sitobion avenae F.) in northern Poland. Arch Biol Sci 66:1141–1148

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (2000) On the adaptive control of the false discovery fate in multiple testing with independent statistics. J Educ Behav Stat 25:60–83

    Article  Google Scholar 

  • Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bottalico A, Perrone G (2002) Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. Eur J Plant Pathol 108:611–624

    Article  CAS  Google Scholar 

  • Bukovinszky T, Gols R, Smid HM, Kiss GB, Dicke M, Harvey JA (2012) Consequences of constitutive and induced variation in the host’s food plant quality for parasitoid larval development. J Insect Physiol 58:367–375

    Article  CAS  PubMed  Google Scholar 

  • Bultman TL, Rodstrom JL, Radabaugh KR, VanDop JD, Librizzi JM, Longwell LL, Pulas C, Grant L, Sullivan TJ (2009) Influence of genetic variation in the fungal endophyte of a grass on an herbivore and its parasitoid. Entomol Exp Appl 130:173–180

    Article  Google Scholar 

  • Cai QN, Han Y, Cao YZ, Hu Y, Zhao X, Bi JL (2009) Detoxification of gramine by the cereal aphid Sitobion avenae. J Chem Ecol 35:320–325

    Article  CAS  PubMed  Google Scholar 

  • Campbell BC, Duffey SS (1981) Alleviation of alpha-tomatine-induced toxicity to the parasitoid, Hyposoter exiguae, by phytosterols in the diet of the host, Heliothis zea. J Chem Ecol 7:927–946

    Article  CAS  PubMed  Google Scholar 

  • Cardoza YJ, Teal PEA, Tumlinson JH (2003) Effect of peanut plant fungal infection on oviposition preference by Spodoptera exigua and on host-searching behavior by Cotesia marginiventris. Environ Entomol 32:970–976

    Article  Google Scholar 

  • Castaneda LE, Figueroa CC, Nespolo RF (2010) Do insect pests perform better on highly defended plants? Costs and benefits of induced detoxification defences in the aphid Sitobion avenae. J Evol Biol 23:2474–2483

    Article  CAS  PubMed  Google Scholar 

  • Claudianos C, Ranson H, Johnson RM, Biswas S, Schuler MA, Berenbaum MR, Feyereisen R, Oakeshott JG (2006) A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Mol Biol 15:615–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daza-Bustamante P, Fuentes-Contreras E, Niemeyer HM (2003) Acceptance and suitability of Acyrthosiphon pisum and Sitobion avenae as hosts of the aphid parasitoid Aphidius ervi (Hymenoptera: Braconidae). Eur J Entomol 100:49–53

    Article  Google Scholar 

  • De Zutter N, Audenaert K, Haesaert G, Smagghe G (2012) Preference of cereal aphids for different varieties of winter wheat. Arthropod Plant Interact 6:345–350

    Article  Google Scholar 

  • Fornelli F, Minervini F, Mule G (2004) Cytotoxicity induced by nivalenol, deoxynivalenol, and fumonisin B, in the SF-9 insect cell line. In Vitro Cell Dev Biol Anim 40:166–171

    Article  CAS  PubMed  Google Scholar 

  • Gols R (2014) Direct and indirect chemical defences against insects in a multitrophic framework. Plant, Cell Environ 37:1741–1752

    Article  Google Scholar 

  • Goswami RS, Kistler HC (2004) Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 5:515–525

    Article  CAS  PubMed  Google Scholar 

  • Grove JF, Hosken M (1975) Larvicidal activity of some 12,13-epoxytrichothec-9-enes. Biochem Pharmacol 24:959–962

    Article  CAS  PubMed  Google Scholar 

  • Harri SA, Krauss J, Muller CB (2008) Fungal endosymbionts of plants reduce lifespan of an aphid secondary parasitoid and influence host selection. Proc R Soc B Biol Sci 275:2627–2632

    Article  Google Scholar 

  • Harri SA, Krauss J, Muller CB (2009) Extended larval development time for aphid parasitoids in the presence of plant endosymbionts. Ecol Entomol 34:20–25

    Article  Google Scholar 

  • Harvey JA, Van Dam NM, Witjes LMA, Solerro R, Gols R (2007) Effects of dietary nicotine on the development of an insect herbivore, its parasitoid and secondary hyperparasitoid over four trophic levels. Ecol Entomol 32:15–23

    Article  Google Scholar 

  • Isebaert S, De Saeger S, Devreese R, Verhoeven R, Maene P, Heremans B, Haesaert G (2009) Mycotoxin-producing Fusarium species occurring in winter wheat in Belgium (Flanders) during 2002–2005. J Phytopathol 157:108–116

    Article  CAS  Google Scholar 

  • Joseph JR, Ameline A, Couty A (2011) Effects on the aphid parasitoid Aphidius ervi of an insecticide (Plenum (R), pymetrozine) specific to plant-sucking insects. Phytoparasitica 39:35–41

    Article  CAS  Google Scholar 

  • Kang Z, Buchenauer H (1999) Immunocytochemical localization of Fusarium toxins in infected wheat spikes by Fusarium culmorum. Physiol Mol Plant Pathol 55:275–288

    Article  CAS  Google Scholar 

  • Landschoot S, Audenaert K, Waegeman W, De Baets B, Haesaert G (2013) Influence of maize-wheat rotation systems on Fusarium head blight infection and deoxynivalenol content in wheat under low versus high disease pressure. Crop Prot 52:14–21

    Article  CAS  Google Scholar 

  • Lu Y, Gao X (2009) Multiple mechanisms responsible for differential susceptibilities of Sitobion avenae (Fabricius) and Rhopalosiphum padi (Linnaeus) to pirimicarb. Bull Entomol Res 99:611–617

    Article  CAS  PubMed  Google Scholar 

  • Mule G, Dambrosio A, Logrieco A, Bottalico A (1992) Toxicity of mycotoxins of Fusarium sambucinum for feeding in Galleria mellonella. Entomol Exp Appl 62:17–22

    Article  CAS  Google Scholar 

  • Oakeshott JG, Johnson RM, Berenbaum MR, Ranson H, Cristino AS, Claudianos C (2010) Metabolic enzymes associated with xenobiotic and chemosensory responses in Nasonia vitripennis. Insect Mol Biol 19:147–163

    Article  CAS  PubMed  Google Scholar 

  • Ode PJ, Berenbaum MR, Zangerl AR, Hardy ICW (2004) Host plant, host plant chemistry and the polyembryonic parasitoid Copidosoma sosares: indirect effects in a tritrophic interaction. Oikos 104:388–400

    Article  CAS  Google Scholar 

  • Pan MZ, Liu TX (2014) Suitability of three aphid species for Aphidius gifuensis (Hymenoptera: Braconidae): parasitoid performance varies with hosts of origin. Biol Control 69:90–96

    Article  Google Scholar 

  • Pestka JJ (2010) Toxicological mechanisms and potential health effects of deoxynivalenol and nivalenol. World Mycotoxin J 3:323–347

    Article  CAS  Google Scholar 

  • Pradeep FS, Palaniswamy M, Ravi S, Thangamani A, Pradeep BV (2015) Larvicidal activity of a novel isoquinoline type pigment from Fusarium moniliforme KUMBF1201 against Aedes aegypti and Anopheles stephensi. Process Biochem 50:1479–1486

    Article  CAS  Google Scholar 

  • Prosser WA, Douglas AE (1992) A test of the hypotheses that nitrogen is upgraded and recycled in an aphid (Acyrthosiphon pisum) symbiosis. J Insect Physiol 38:93–99

    Article  CAS  Google Scholar 

  • Rocha O, Ansari K, Doohan FM (2005) Effects of trichothecene mycotoxins on eukaryotic cells: a review. Food Addit Contam 22:369–378

    Article  CAS  PubMed  Google Scholar 

  • Roth S, Knorr C, Lindroth RL (1997) Dietary phenolics affects performance of the gypsy moth (Lepidoptera: Lymantriidae) and its parasitoid Cotesia melanoscela (Hymenoptera: Braconidae). Environ Entomol 26:668–671

    Article  CAS  Google Scholar 

  • Sadd BM et al (2015) The genomes of two key bumblebee species with primitive eusocial organization. Genome Biol 16:76–107

    Article  PubMed  PubMed Central  Google Scholar 

  • Sadeghi A, Van Damme EJM, Smagghe G (2009) Evaluation of the susceptibility of the pea aphid, Acyrthosiphon pisum, to a selection of novel biorational insecticides using an artificial diet. J Insect Sci 9:1–8

    Article  PubMed  Google Scholar 

  • Tomanovic Z, Kavallieratos NG, Stary P, Petrovic-Obradovic O, Athanassiou CG, Stanisavljevic LZ (2008) Cereal aphids (Hemiptera: Aphidoidea) in Serbia: seasonal dynamics and natural enemies. Eur J Entomol 105:495–501

    Article  Google Scholar 

  • van Nouhuys S, Laine AL (2008) Population dynamics and sex ratio of a parasitoid altered by fungal-infected diet of host butterfly. Proc R Soc B Biol Sci 275:787–795

    Article  Google Scholar 

  • Werren JH et al (2010) Functional and evolutionary insights from the genomes of three parasitoid nasonia species. Science 327:343–348

    Article  CAS  PubMed  Google Scholar 

  • Wyatt IJ, White PF (1977) Simple estimation of intrinsic increase rates for aphids and tetranychid mites. J Appl Ecol 14:757–766

    Article  Google Scholar 

  • Zhang MX, Fang TT, Pu GL, Sun XQ, Zhou XG, Cai QN (2013) Xenobiotic metabolism of plant secondary compounds in the English grain aphid, Sitobion avenae (F.) (Hemiptera: Aphididae). Pest Biochem Physiol 107:44–49

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Nathalie De Zutter is holder of a Ph.D. grant by the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT mandate No 111432).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie De Zutter.

Additional information

Handling Editor: Robert Glinwood.

Geert Haesaert and Guy Smagghe are equal last author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Zutter, N., Audenaert, K., Ameye, M. et al. Effect of the mycotoxin deoxynivalenol on grain aphid Sitobion avenae and its parasitic wasp Aphidius ervi through food chain contamination. Arthropod-Plant Interactions 10, 323–329 (2016). https://doi.org/10.1007/s11829-016-9432-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-016-9432-1

Keywords

Navigation