Skip to main content

Advertisement

Log in

Analysing spatial correlation of weeds and harvester ants in cereal fields using point processes

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

The interaction between the spatial distribution of weed richness and weed cover and the spatial location of harvester ant nets was investigated in cereal fields. The understanding of such interdependencies can be relevant to understand weed population dynamics in dryland cereal fields and may enhance management strategies for weed control. We used spatial statistical tools derived from point process theory. In particular, we compared the two spatial configurations by assuming two different point patterns. We did so by replacing the random weed fields by a related point pattern and comparing it with the point pattern of harvester ants. Our results suggest that areas with a high density of ant nests are, in this case study, in areas with low weed richness and that large nests have a greater impact than small nests. Considering that only one field was analysed, preserving and enhancing regular ant nest distributions, especially of large nests, might have an impact on depleting weeds and consequently enhancing weed control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Azcárate FM, Kovacs E, Peco B (2007) Microclimatic conditions regulate surface activity in harvester ants Messor barbarus. J Insect Behav 20:315–329

    Article  Google Scholar 

  • Baraibar B, Westerman PR, Carrión E, Recasens J (2009) Effects of tillage and irrigation in cereal fields on weed seed removal by seed predators. J Appl Ecol 46:380–387

    Article  Google Scholar 

  • Baraibar B, Torra J, Westerman PR (2011) Harvester ant (Messor barbarus (L.)) density as related to soil properties, topography and management in semi-arid cereals. Appl Soil Ecol 51:60–65

    Article  Google Scholar 

  • Barroso J, Fernández-Quintanilla C, Ruiz D, Hernáiz P, Rew LJ (2004) Spatial stability of Avena sterilis ssp. ludoviciana populations under annual applications of low rates of imazamethabenz. Weed Res 44:178–186

    Article  Google Scholar 

  • Barroso J, Navarrete L, Sánchez del Arco MJ, Fernández-Quintanilla C, Lutman PJW, Perry NH, Hull RI (2006) Dispersal of Avena fatua and Avena sterilis patches by natural dissemination, soil tillage and combine harvesters. Weed Res 46:118–128

    Article  Google Scholar 

  • Blanco-Moreno JM, Sans FX, Chamorro L, Masalles RM, Recasens J (2004) Spatial distribution of Lolium rigidum seedlings following seed dispersal by combine harvesters. Weed Res 44:375–387

    Article  Google Scholar 

  • Blanco-Moreno JM, Chamorro L, Sans FX (2006) Spatial and temporal patterns of Lolium rigidumAvena sterilis mixed populations in a cereal field. Weed Res 46:207–218

    Article  Google Scholar 

  • Blanco-Moreno JM, Westerman PR, Atanackovic V, Torra J (2014) The spatial distribution of nests of harvester ants Messor barbarus (L.) in dryland cereals. Insect Soc 22:145–152

    Article  Google Scholar 

  • Burton MG, Mortensen DA, Lindquist JL (2006) Effect of cultivation and within-field differences in soil conditions on feral Helianthus annuus growth in ridge-tillage maize. Soil Till Res 88:8–15

    Article  Google Scholar 

  • Cirujeda A, Recasens J, Torra J, Taberner A (2008) A germination study of herbicide-resistant field poppies in Spain. Agron Sustain Devel 28:207–220

    Article  Google Scholar 

  • Colbach N, Forcella F, Johnson GA (2000) Spatial and temporal stability of weed populations over five years. Weed Sci 48:366–377

    Article  CAS  Google Scholar 

  • Comas C (2009) Modelling forest regeneration strategies through the development of a spatio-temporal growth interaction model. Stoch Environ Res Risk Assess 23:1089–1102

    Article  Google Scholar 

  • Comas C, Mateu J (2011) On the Takacs-Fiksel estimation method for forest field observations. Stoch Environ Res Risk Assess 25:287–300

    Article  Google Scholar 

  • Cressie N (1993) Statistics for spatial data. Wiley, New York, USA

    Google Scholar 

  • Crist TO, Macmahon JA (1992) Harvester ant foraging and shrub-steppe seeds: interactions of seed resources and seed use. Ecology 73:1768–1779

    Article  Google Scholar 

  • Di Virgilio N, Monti A, Venturi G (2007) Spatial variability of switchgrass (Panicum virgatum L.) yield as related to soil parameters in a small field. Field Crop Res 101:232–239

    Article  Google Scholar 

  • Díaz M (1991) Spatial patterns of granivorous ant nest abundance and nest site selection in agricultural landscapes of Central Spain. Insect Soc 38:351–363

    Article  Google Scholar 

  • Díaz M (1992) Spatial and temporal patterns of granivorous ant seed predation in patchy cereal crop areas of central Spain. Oecologia 91:561–568

    Article  Google Scholar 

  • Dicke D, Gerhards R, Büchse A, Hurle K (2007) Modeling spatial and temporal dynamics of Chenopodium album L. under the influence of site-specific weed control. Crop Prot 26:206–211

    Article  Google Scholar 

  • Dieleman JA, Mortensen DA (1999) Characterizing the spatial pattern of Abutilon theophrasti seedling patches. Weed Res 39:455–467

    Article  Google Scholar 

  • Dieleman JA, Mortensen DA, Buhler DD, Ferguson RB (2000) Identifying associations among site properties and weed species abundance. II. Hypothesis generation. Weed Sci 48:576–587

    Article  CAS  Google Scholar 

  • Diggle PJ (2003) Statistical analysis of spatial point patterns. Hodder Arnold, London, UK

    Google Scholar 

  • Ford ED (1975) Competition and stand structure in some even-aged monocultures. J Ecol 63:311–333

    Article  Google Scholar 

  • García AL, Recasens J, Torra J, Forcella F, Royo-Esnal A (2013) Hydrothermal emergence model for Bromus diandrus. Weed Sci 61:146–153

    Article  Google Scholar 

  • García AL, Royo-Esnal A, Torra J, Cantero-Martínez C, Recasens J (2014) Integrated management of Bromus diandrus in dry-land cereal fields under no-till. Weed Res 54:408–417

    Article  Google Scholar 

  • Harkness RD, Isham V (1983) A bivariate spatial point pattern of ants’ nests. J Appl Stat 3:293–303

    Article  Google Scholar 

  • Heijting S, Van der Werf W, Kropff MJ (2009) Seed dispersal by forage harvester and rigid-tine cultivator in maize. Weed Res 49:153–163

    Article  Google Scholar 

  • Hölldobler B (1981) Foraging and spatiotemporal territories in the honey ant Myrmecocystus mimicus wheeler (Hymenoptera: Formicidae). Behav Ecol Sociobiol 9:301–314

    Article  Google Scholar 

  • Illian J, Penttinen A, Stoyan H, Stoyan D (2008) Statistical analysis and modelling of spatial point patterns. Wiley, New York, USA

    Google Scholar 

  • Isaaks EH, Srivastava RM (1989) An introduction to applied geostatistics. Oxford University Press, New York, USA

    Google Scholar 

  • Izquierdo J, Blanco-Moreno JM, Chamorro L, González-Andújar JL, Sans FX (2009a) Spatial distribution of weed diversity within a cereal field. Agron Sustain Dev 29:491–496

    Article  Google Scholar 

  • Izquierdo J, Blanco-Moreno JM, Chamorro L, Recasens J, Sans FX (2009b) Spatial distribution and temporal stability of prostrate knotweed (Polygonum aviculare) and corn poppy (Papaver rhoeas) seed bank in a cereal field. Weed Sci 57:505–511

    Article  CAS  Google Scholar 

  • Law R, Illian J, Burslem DFRP, Gratzer G, Gunatilleke CVS, Gunatilleke IAUN (2009) Ecological information from spatial patterns of plants: insights from point process theory. J Ecol 97:616–628

    Article  Google Scholar 

  • Nicolai N, Feagin RA, Smeins FE (2010) Spatial patterns of grass seedling recruitment imply predation and facilitation by harvester ants. Environ Entomol 39:127–133

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2007) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna. http://www.R-project.org

  • Rey-Caballero J, Menéndez J, Giné-Bordonaba J, Salas M, Alcántara R, Torra (2016) Unravelling the resistance mechanisms to 2,4-D (2,4-dichlorophenoxyacetic acid) in corn poppy (Papaver rhoeas). Pest Biochem Physiol. doi:10.1016/j.pestbp.2016.03.002

  • Ripley BD (1976) The second-order analysis of stationary point processes. J Appl Probab 13:255–266

    Article  Google Scholar 

  • Ryti RT, Case TJ (1992) The role of neighborhood competition in the spacing and diversity of ant communities. Am Nat 139:355–374

    Article  Google Scholar 

  • Stoyan D, Penttinen A (2000) Recent applications of point process methods in forestry statistics. Stat Sci 15:61–78

    Article  Google Scholar 

  • Stoyan D, Stoyan H (1994) Fractals, random shapes and point fields: methods of geometrical statistics. Wiley, Chichester, UK

    Google Scholar 

  • Stoyan D, Kendall WS, Mecke J (1995) Stochastic geometry and its applications. Wiley, New York, USA

    Google Scholar 

  • Tanner CJ, Keller L (2012) Nest distribution varies with dispersal method and familiarity-mediated aggression for two sympatric ants. Anim Behav 84:1151–1158

    Article  Google Scholar 

  • Torra J, Atanackovic V, Blanco-Moreno JM, Royo-Esnal A, Westerman PR (2016) Effect of patch size on seed removal by harvester ants. Weed Res 56:14–21

    Article  Google Scholar 

  • Westerman PR, Wes JS, Kropff MJ, Van der Werf W (2003) Annual losses of weed seeds due to predation in organic cereal fields. J Appl Ecol 40:824–836

    Article  Google Scholar 

  • Westerman PR, Atanackovic V, Royo-Esnal A, Torra J (2012) Differential weed seed removal in dryland cereals. Arthropod Plant Inte 6:591–599

    Article  Google Scholar 

  • Wiegand T, Kissling WD, Cipriotti PA, Aguiar MNR (2006) Extending point pattern analysis for objects of finite size and irregular shape. J Ecol 94:825–837

    Article  Google Scholar 

  • Wiernasz DC, Cole BJ (1995) Spatial Distribution of Pogonomyrmex occidentalis: recruitment, Mortality and Overdispersion. J Anim Ecol 64:519–527

    Article  Google Scholar 

  • Williams MM II, Mortensen DA, Marx DB (2002) Within-field soil heterogeneity effects on herbicide-mediated crop injury and weed biomass. Weed Sci 49:798–805

    Article  Google Scholar 

  • Woolcock JL, Cousens RA (2000) Mathematical analysis of factors affecting the rate of spread of patches of annual weeds in an arable field. Weed Sci 48:27–34

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank the Ministry of Education and Science of Spain (projects AGL 2007-60828 and AGL 2010-22084-C02-01) for the research funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel Torra.

Additional information

Handling Editor: Heikki Hokkanen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Comas, C., Royo-Esnal, A., Recasens, J. et al. Analysing spatial correlation of weeds and harvester ants in cereal fields using point processes. Arthropod-Plant Interactions 10, 197–205 (2016). https://doi.org/10.1007/s11829-016-9425-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-016-9425-0

Keywords

Navigation