Skip to main content
Log in

Cardenolides from Gomphocarpus sinaicus and Pergularia tomentosa (Apocynaceae: Asclepiadoideae) deter the feeding of Spodoptera littoralis

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Methanol extracts of Gomphocarpus sinaicus, Pergularia tomentosa and Cynanchum acutum (Apocynaceae, sub-family Asclepiadoideae) deterred feeding of Spodoptera littoralis in a binary-choice bioassay. Analyses of extracts using high-performance liquid chromatography with photodiode array detection indicated that methanol extracts of P. tomentosa and G. sinaicus contained cardenolides, while these compounds were not detected in extracts of C. acutum. Activity-guided fractionation of the methanol extracts of G. sinaicus and P. tomentosa resulted in the isolation of six cardenolides: 7,8-dehydrocalotropin, calotropin and coroglaucigenin 3-(6-deoxy-β-allopyranoside)-19-acetate (frugoside 19-acetate) from G. sinaicus, and coroglaucigenin, 16α-acetoxycalotropin and calactin from P. tomentosa. The isolation of 16α-acetoxycalotropin was a new report from P. tomentosa. Each of the 6 cardenolides deterred feeding by S. littoralis, while two cardenolide standards, digoxin and digitoxin, did not affect feeding. Differences among cardenolides in their effect on feeding were associated with specific structural features. C. acutum is the only one of the three species tested that is known to support the development of S. littoralis, although the development of larvae was delayed. The observed feeding deterrent activity of the cardenolide-free methanol extract of C. acutum would suggest that compounds other than cardenolides are responsible for the deterrent activity. These compounds, although deterrent in a short-term feeding assay, might not prevent long term feeding, thus allowing the larvae to develop on the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Azim NS (1998) A cardenolide glycoside from Gomphocarpus sinaicus. Phytochemistry 49:273–275

    Article  CAS  Google Scholar 

  • Abdel-Azim NS, Hammouda FM, Hunkler D, Rimpler H (1996) Re-investigation of the cardenolide glycosides from Gomphocarpus sinaicus. Phytochemistry 42:523–529

    Article  CAS  Google Scholar 

  • Akhtar Y, Isman MB (2004a) Comparative growth inhibitory and antifeedant effects of plant extracts and pure allelochemicals on four phytophagous insect species. J Appl Entomol 128:32–38

    Article  CAS  Google Scholar 

  • Akhtar Y, Isman MB (2004b) Generalization of a habituated feeding deterrent response to unrelated antifeedants following prolonged exposure in a generalist herbivore, Trichoplusia ni. J Chem Ecol 30:1349–1362

    Article  PubMed  CAS  Google Scholar 

  • Akhtar Y, Rankin CH, Isman MB (2003) Decreased response to feeding deterrents following prolonged exposure in the larvae of a generalist herbivore, Trichoplusia ni (Lepidoptera: Noctuidae). J Insect Behav 16:811–831

    Article  Google Scholar 

  • Begum S, Siddiqui BS, Sultana R, Zia A, Suria A (1999) Bio-active cardenolides from the leaves of Nerium oleander. Phytochemistry 50:435–438

    Article  PubMed  CAS  Google Scholar 

  • Bernays EA, Chapman RF (1996) Host Plant Selection by Phytophagous Insects. Chapman and Hall, New York

    Google Scholar 

  • Broza M, Sneh B (1980) Cynanchum acutum L. (Asclepiadaceae) as host for Egyptian cotton leaf worm, Spodoptera littoralis (Boisd.). J Appl Entomol 90:526–529

    Google Scholar 

  • Chen RF, Abe F, Yamauchi T, Taki M (1987) Cardenolide glycosides of Strophanthus divaricatus. Phytochemistry 26:2351–2355

    Article  CAS  Google Scholar 

  • Cheung HTA, Nelson CJ, Watson TR (1989) New cardenolide glycosides with doubly linked sugars from Asclepias vestita. J Chem Res Synop:6–7

    Google Scholar 

  • Dussourd DE, Hoyle AM (2000) Poisoned plusiines: toxicity of milkweed latex and cardenolides to some generalist caterpillars. Chemoecology 10:11–16

    Article  CAS  Google Scholar 

  • El-Askary H, Hölzl J, Hilal S, El-Kashoury E-S (1993) Cardenolide glycosides with doubly linked sugars from Gomphocarpus sinaicus. Phytochemistry 34:1399–1402

    Article  CAS  Google Scholar 

  • El-Askary H, Hölzl J, Hilal S, El-Kashoury E-S (1995a) A comparative study of the cardenolide content of different organs of Gomphocarpus sinaicus. Phytochemistry 38:1181–1184

    Article  CAS  Google Scholar 

  • El-Askary H, Hölzl J, Hilal S, El-Kashoury E-S (1995b) Cardenolide glycosides from Gomphocarpus sinaicus. Phytochemistry 38:943–946

    Article  CAS  Google Scholar 

  • Fawzy GA, Abdallah HM, Marzouk MSA, Soliman FM, Sleem AA (2008) Antidiabetic and antioxidant activities of major flavonoids of Cynanchum acutum L. (Asclepiadaceae) growing in Egypt. Z. Naturforsch C 63:658–662

    Google Scholar 

  • Fukuyama Y, Ochi M, Kasai H, Kodama M (1993) Insect growth inhibitory cardenolide glycosides from Anodendron affine. Phytochemistry 32:297–301

    Article  CAS  Google Scholar 

  • Gohar AA, El-Olemy MM, Abdel-Sattar E, El-Said M, Niwa M (2000) Cardenolides and ß-sitosterol glucoside from Pergularia tomentosa L. Nat Prod Sci 6:142–146

    CAS  Google Scholar 

  • Hamed AI, Plaza A, Balestrieri ML, Mahalel UA, Springuel IV, Oleszek W, Pizza C, Piacente S (2006) Cardenolide glycosides from Pergularia tomentosa and their proapoptotic activity in Kaposi’s sarcoma cells. J Nat Prod 69:1319–1322

    Article  PubMed  CAS  Google Scholar 

  • Helmus MR, Dussourd DE (2004) Glues or poisons: which triggers vein cutting by monarch caterpillars. Chemoecology 15:45–49

    Article  Google Scholar 

  • Heneidak S, Grayer RJ, Kite GC, Simmonds MSJ (2006) Flavonoid glycosides from Egyptian species of the tribe Asclepiadeae (Apocynaceae, subfamily Asclepiadoideae). Biochem Syst Ecol 34:575–584

    Article  CAS  Google Scholar 

  • Huang X, Renwick JAA (1994) Cardenolides as oviposition deterrents to two Pieris species: structure-activity relationships. J Chem Ecol 20:1039–1051

    Article  CAS  Google Scholar 

  • Huang XP, Renwick JAA (1995) Cross habituation to feeding deterrents and acceptance of a marginal host plant by Pieris rapae larvae. Entomol Exp Appl 76:295–302

    Article  CAS  Google Scholar 

  • Huang X, Renwick JAA, Sachdev-Gupta K (1993) A chemical basis for differential acceptance of Erysimum cheiranthoides by two Pieris species. J Chem Ecol 19:195–210

    Article  CAS  Google Scholar 

  • Jolad SD, Bates RB, Cole JR, Hoffmann JJ, Siahann TJ, Timmermann BN (1986) Cardenolides and a lignan from Asclepias subulata. Phytochemistry 25:2581–2590

    Article  CAS  Google Scholar 

  • Malcolm SB (1991) Cardenolide mediated interactions between plants and herbivores. In: Rosenthal GA, Berenbaum MA (eds) Herbivores: Their interactions with secondary plant metabolites. The Chemical Participants, vol 1. Academic Press, San Diego, pp 251–296

    Google Scholar 

  • Martel JW, Malcolm SB (2004) Density dependent reduction and induction of milkweed cardenolides by a sucking insect herbivore. J Chem Ecol 30:545–561

    Article  PubMed  CAS  Google Scholar 

  • Mohamed MA, Ahamed WS, El-Said MM, Hayen H (2008) New acylated flavonol diglycosides of Cynanchum acutum. Nat Prod Commun 3:193–198

    CAS  Google Scholar 

  • Moore LV, Scudder GGE (1985) Selective sequestration of milkweed (Asclepias sp.) cardenolides in Oncopeltus fasciatus (Dallas) (Hemiptera: Lygaeidae). J Chem Ecol 5:667–687

    Article  Google Scholar 

  • Pauli GF, Fröhlich R (2000) Chiral key positions in Uzara steroids. Phytochem. Anal. 11:79–89

    Article  CAS  Google Scholar 

  • Piacente S, Masullo M, De Neve N, Dewelle J, Hamed A, Kiss R, Mijatovic T (2009) Cardenolides from Pergularia tomentosa Display Cytotoxic Activity Resulting from Their Potent Inhibition of Na+/K+-ATPase. J Nat Prod 72:1087–1091

    Article  PubMed  CAS  Google Scholar 

  • Rasmann S, Johnson MD, Agrawal AA (2009) Induced responses to herbivory and jasmonate in three milkweed species. J Chem Ecol 35:1326–1334

    Article  PubMed  CAS  Google Scholar 

  • Renwick JAA (1996) Diversity and dynamics of crucifer defenses against adults and larvae of cabbage butterflies. In: Romeo JT, Saunders JA, Barbosa P (eds) Recent Advances in Phytochemistry 30. Phytochemical Diversity and Redundancy in Ecological Interactions. New York, Plenum Press, pp 57–79

    Google Scholar 

  • Rodriguez-Hahn L, Fonseca G (1991) The cardenolide content of Asclepias linaria. Phytochemistry 30:3941–3942

    Article  CAS  Google Scholar 

  • Rothschild M (1972) Secondary plant substances and warning colouration in insects. Symp Royal Entomol Soc Lond 6:59–83

    Google Scholar 

  • Sachdev-Gupta K, Radke CD, Renwick JAA, Dimock MB (1993) Cardenolides from Erysimum cheiranthoides – feeding deterrents to Pieris rapae larvae. J Chem Ecol 19:1355–1369

    Article  CAS  Google Scholar 

  • Scudder GGE, Moore LV, Isman MB (1986) Sequestration of cardenolides in Oncopeltus fasciatus morphological and physiological adaptations. J Chem Ecol 12:1171–1187

    Article  CAS  Google Scholar 

  • Simmonds MSJ (2006) The search for plant-derived compounds with antifeedant activity. In: Rai M, Carpinella MC (eds) Advances in phytomedicine, vol 3: Naturally occurring bioactive compounds, Elsevier, Amsterdam, pp 291–324

    Chapter  Google Scholar 

  • Simmonds MSJ, Blaney WM, Fellows LE (1990) Behavioural and electrophysiological study of antifeedant mechanisms associated with polyhydroxy-alkaloids. J Chem Ecol 16:3167–3196

    Article  CAS  Google Scholar 

  • Simmonds MSJ, Blaney WM, Ley SV, Anderson JC, Banteli R, Denholm A, Green PWC, Grossman RB, Gutteridge C, Jannens L, Smith SC, Toogood PL, Wood A (1995) Behavioural and neurophysiological responses of Spodoptera littoralis to azadirachtin and a range of synthetic analogues. Ent Exp Appl 77:69–80

    Article  CAS  Google Scholar 

  • Stevenson PC, Simmonds MSJ, Yule MA, Veitch NC, Kite GC, Irwin D, Legg M (2003) Insect antifeedant furanocoumarins from Tetradium daniellii. Phytochemistry 63:41–46

    Article  PubMed  CAS  Google Scholar 

  • Vaughan GL, Jungreis AM (1977) Insensitivity of lepidopteran tissues to ouabain: physiological mechanisms for protection from cardiac glycosides. J Insect Physiol 23:585–589

    Article  CAS  Google Scholar 

  • Wellsow J, Grayer RJ, Veitch NC, Kokubun T, Lelli R, Kite GC, Simmonds MSJ (2006) Insect antifeedant and antibacterial activity of diterpenoids from species of Plectranthus. Phytochemistry 67:1818–1825

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Bioassays using S. littoralis were carried out under a Defra licence issued to Kew under the Plant Health (England) Order 2005. We are grateful to Dr. Samia Heneidak for supplying the plant material to Dr. Geoffrey Kite for the LC–MS Orbitrap analyses and to Dr. Reneé Grayer for help with interpreting HPLC chromatograms. Martha Boalch, Lilla D`Costa, Peter Elliott, Aline Horwath, John Lees, and Dr Tom Prescott are thanked for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. C. Green.

Additional information

Handling Editor: Gary Felton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, P.W.C., Veitch, N.C., Stevenson, P.C. et al. Cardenolides from Gomphocarpus sinaicus and Pergularia tomentosa (Apocynaceae: Asclepiadoideae) deter the feeding of Spodoptera littoralis . Arthropod-Plant Interactions 5, 219–225 (2011). https://doi.org/10.1007/s11829-011-9131-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-011-9131-x

Keywords

Navigation