Skip to main content
Log in

Identification of Crepenynic Acid in the Seed Oil of Atractylodes lancea and A. macrocephala

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

Atractylodes rhizome is widely used in traditional Chinese herbal medicine. Although the chemical composition of the root has been studied in detail, the oil content and fatty acid composition of the seeds of Atractylodes species have not been reported. Fatty acyl composition of seeds from Atractylodes lancea and A. macrocephala was determined by gas chromatography and mass spectrometry of fatty acid methyl esters and 3-pyridylcarbinol esters. The predominant fatty acid in the seeds of both species was linolenic acid, but the unusual acetylenic fatty acid, crepenynic acid (cis-9-octadecen-12-ynoic acid), was also observed at levels of 18% in A. lancea and 13–15% in A. macrocephala. Fatty acid content was 24% for the samples of A. lancea and 16–17% for samples from A. macrocephala. sn-1,3 regioselective lipase digestion of seed lipids revealed that crepenynic acid was absent from the sn-2 position of the seed triacylglycerol. Crepenynic acid was also found in the seed oil of Jurinea mollis at 24% and was not present in the sn-2 position of the TAG. A contrasting distribution of crepenynic acid was found in the oil of Crepis rubra, suggesting differences in crepenynic acid synthesis or TAG assembly between these species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

FAME(s):

Fatty acid methyl ester(s)

MAG:

Monoacylglycerol

TAG:

Triacylglycerol

X:Y Z :

Where X is the chain length, Y is the number of double bonds and Z is the double-bond position relative to the carboxyl end of the molecule

References

  1. Pharmacopeia Committee of P. R. China (2010) Pharmacopoeia of the People’s Republic of China. China Medical Science and Technology Press, Beijing. ISBN 9787506744393

    Google Scholar 

  2. Li Y-X (2003) Medicinal value of Atractylodes macrocephala L. and its cultivation technology for high yield. Hunan Agric Sci 1:57–58

    CAS  Google Scholar 

  3. Yosioka I, Tani T, Hirose M, Kitagawa I (1974) Diacetyl-atractylodiol, a new acetylenic compound from Atractylodes japonica Koidzumi. Chem Pharm Bull 22:1943–1945

    Article  CAS  Google Scholar 

  4. Cen Z-L (1987) The acetylenes from Atractylodes macrocephala. Planta Med 53:493–494

    Article  Google Scholar 

  5. Li C-Q, He L-C, Dong H-Y, Jin J-Q (2007) Screening for the anti-inflamatory activity of fractions and compounds from Atractylodes macrocephala Koidz. J Ethnopharmacol 114:212–217

    Article  CAS  Google Scholar 

  6. Koonrungsesomboon N, Na-Bangchang K, Karbwang J (2014) Therapeutic potential and pharmacological activities of Atractylodes lancea (Thunb.) DC. Asian Pacific J Trop Med 2014:421–428

    Article  Google Scholar 

  7. Xu K, Jiang J-S, Feng Z-M, Yang Y-N, Li L, Zang C-X, Zhang P-C (2016) Bioactive sesquiterpenoid and polyacetylene glycosides from Atractylodes lancea. J Nat Prod 79:1567–1575

    Article  CAS  Google Scholar 

  8. Wolff IA (1966) Seed lipids. Science 154:1140–1149

    Article  CAS  Google Scholar 

  9. Badami RC, Patil KB (1980) Structure and occurrence of unusual fatty acids in minor seed oils. Prog Lipid Res 19:119–153

    Article  CAS  Google Scholar 

  10. Dyer JM, Stymne S, Green AG, Carlsson AS (2008) High-value oils from plants. Plant J 54:604–655

    Article  Google Scholar 

  11. Perdue RE, Carlson KD, Gilbert MG (1986) Vernonia galamensis, potential new crop source of epoxy acid. Econ Bot 40:54–68

    Article  CAS  Google Scholar 

  12. Fan Y-Y, Chapkin RS (1998) The importance of dietary γ-linolenic acid in human health and nutrition. J Nutr 128:1411–1414

    CAS  Google Scholar 

  13. Tsevegsuren N, Aitzetmuller K, Vosmann K (1997) Unusual fatty acids in compositae: γ-linolenic acid in Saussurea spp. seed oils. J High Res Chromatogr 20:315–320

    Article  CAS  Google Scholar 

  14. Smith MA, Zhang H, Purves RW (2014) Identification and distribution of oxygenated fatty acids in Plantago seed lipids. J Am Oil Chem Soc 91:1313–1322

    Article  CAS  Google Scholar 

  15. Balazy M, Nies AS (1989) Characterization of epoxides of polyunsaturated fatty acids by mass spectrometry via 3-pyridinylmethyl esters. Biomed Environ Mass Spectrom 18:328–336

    Article  CAS  Google Scholar 

  16. Kleiman R, Bohannon MB, Gunstone FB, Barve JA (1976) Mass spectra of acetylenic fatty acid methyl esters and derivatives. Lipids 11:599–603

    Article  CAS  Google Scholar 

  17. Cahoon EB, Schnurr JA, Huffman EA, Minto RE (2003) Fungal responsive fatty acid acetylenases occur widely in evolutionary distant plant families. Plant J 34:671–683

    Article  CAS  Google Scholar 

  18. Earle FR, Barclay AS, Wolff IA (1966) Compositional variation in seed oils of the Crepis genus. Lipids 1:325–327

    Article  CAS  Google Scholar 

  19. Mikolajczak KL, Smith CR, Bagby MO, Wolff IA (1964) A new type of naturally occurring polyunsaturated fatty acid. J Org Chem 29:318–322

    Article  CAS  Google Scholar 

  20. Haigh WG, Morris LJ, James AT (1968) Acetylenic acid biosynthesis in Crepis rubra. Lipids 3:307–312

    Article  CAS  Google Scholar 

  21. Lee M, Lenman M, Banas A, Bafor M, Singh S, Schweizer M, Nilsson R, Liljenberg C, Dahlqvist A, Gummeson P-O, Sjodahl S, Green A, Stymne S (1998) Identification of non-heme diiron proteins that catalyze triple bond and epoxy group formation. Science 280:915–918

    Article  CAS  Google Scholar 

  22. Reed DW, Polichuk DR, Buist PH, Ambrose SJ, Sasata RJ, Savile CK, Ross ARS, Covello PS (2003) Mechanistic study of an improbable reaction: alkene dehydrogenation by the ∆12 acetylenase of Crepis alpina. J Am Chem Soc 125:10635–10640

    Article  CAS  Google Scholar 

  23. Banas A, Bafor M, Wiberg E, Lenman M, Stahl U, Stymne S (1996) Biosynthesis of an acetylenic fatty acid in microsomal preparations from developing seeds of Crepis alpina. In: Williams JP, Khan MU, Lem NW (eds) Physiology, biochemistry and molecular biology of plant lipids. Springer, Netherlands, pp 57–59

    Google Scholar 

  24. Carlsson AS, Thomaeus S, Hamberg M, Stymne S (2004) Properties of two multifunctional plant fatty acid acetylenase/desaturase enzymes. Eur J Biochem 271:2991–2997

    Article  CAS  Google Scholar 

  25. Neff WE, Adlof RO, Konishi H, Weisleder D (1993) High-performance liquid chromatography of the triacylglycerols of Vernonia gamamensis and Crepis alpina seed oils. J Am Oil Chem Soc 70:449–456

    Article  CAS  Google Scholar 

  26. Kuklev DV, Domb AJ, Dembitsky VM (2013) Bioactive acetylenic metabolites. Phytomed 20:1145–1159

    Article  CAS  Google Scholar 

  27. Minto RE, Blacklock BJ (2008) Biosynthesis and function of polyacetylenes and allied natural products. Prog Lipid Res 47:233–306

    Article  CAS  Google Scholar 

  28. Xu T, Tripathi SK, Feng Q, Lorenz MC, Wright MA, Jacob MR, Mask MM, Baerson SR, Li X-C, Clark AM, Agarwal AK (2012) A potent plant-derived antifungal acetylenic acid mediates its activity by interfering with fatty acid homeostasis. Antimicrob Agents Chemother 56:2894–2907

    Article  CAS  Google Scholar 

  29. Nieuwenhuizen WF, Van der Klerk-Van Hoof A, Van Lenthe JH, Van Schaik RC, Versluis K, Veldink GA, Vliegenthart JFG (1997) Lipoxygenase is irreversibly inactivated by the hydroperoxides formed from the enynoic analogues of linoleic acid. Biochem 36:4480–4488

    Article  CAS  Google Scholar 

  30. Ford GL, Fogerty AC, Walker KH (1986) Crepenynic acid and muscle breakdown. Prog Lipid Res 25:263–267

    Article  CAS  Google Scholar 

  31. Ford GL, Whitfield FB, Walker KH (1983) Fatty acid composition of Ixiolaena brevicompta F. Muell. Seed oil. Lipids 18:103–105

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Council Canada National Bioproducts Program, the National Natural Science Foundation of China (No. 31571708), the Provincial Natural Science Foundation of Shandong of China (No. ZR2015CM039), the Provincial Independent Innovation and Achievement Transformation Program of Shandong of China (No. 2014CGZH0712), and the Taishan Overseas Talents Introduction Program of Shandong, China (No. tshw20120747). We thank Dr Brent Pollock for critical review of the manuscript. NRC publication number 56306.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Smith.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, JY., Guo, X. & Smith, M.A. Identification of Crepenynic Acid in the Seed Oil of Atractylodes lancea and A. macrocephala . J Am Oil Chem Soc 94, 655–660 (2017). https://doi.org/10.1007/s11746-017-2974-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-017-2974-2

Keywords

Navigation