Skip to main content
Log in

Composition of Catalpa ovata Seed Oil and Flavonoids in Seed Meal as Well as Their Antioxidant Activities

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

An Erratum to this article was published on 03 September 2015

Abstract

In view of the growing demand for vegetable oil, currently exploration of some non-conventional oils is of great concern. This study firstly analyzed the contents of fatty acids, phytosterols, and tocopherols in Catalpa ovata seed oil collected from four different Provinces in China. Then the composition of flavonoids as well as their antioxidant activities in defatted seed meal was determined. The results showed that the relative oil content in C. ovata seeds ranged from 24.0 to 36.0 % and seed oil was mainly composed of fatty acids linoleic acid (43.4–50.1 %), α-linolenic acid (23.8–24.4 %), and oleic acid (13.1–16.2 %). The content of unsaturated fatty acids was up to 85.0 %. Sterol in seed oil mainly contained campesterol, stigmasterol, and β-sitosterol. β-sitosterol accounted for 74.0 % of the total sterol. The tocopherol content was 173.0–225.7 mg/100 g. Defatted seed meal from Hubei Province showed the highest content of total flavonoids (11 mg/g) and the strongest activities for DPPH radicals scavenging, ABTS radicals scavenging, and ferric reducing antioxidant power compared with other defatted seed meal in this study. Seven flavonoids were identified from C. ovata seed meal. These results suggest that C. ovata seeds may be developed as a new source of oil and can also be properly used in pharmaceuticals and cosmetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simopoulos AP (2011) Evolutionary aspects of diet: the omega-6/omega-3 ratio and the brain. Mol Neurobiol 44:203–215

    Article  CAS  Google Scholar 

  2. McCusker MM, Grant-Kels JM (2010) Healing fats of the skin: the structural and immunologic roles of the omega-6 and omega-3 fatty acids. Clin Dermatol 28:440–451

    Article  Google Scholar 

  3. Takeshita M, Katsuragi Y, Kusuhara M, Higashi K, Miyajima E, Mizuno K, Mori K, Obata T, Ohmori R, Ohsuzu F, Onodera Y, Sano J, Sawada S, Tabata S, Tokimitsu I, Tomonobu K, Yamashita T, Yasukawa T, Yonemura A, Nakamura H (2008) Phytosterols dissolved in diacylglycerol oil reinforce the cholesterol-lowering effect of low-dose pravastatin treatment. Nutr Metab Cardiovas 18:483–491

    Article  CAS  Google Scholar 

  4. Hounsome N, Hounsome B, Tomos D, Edwards-Jones G (2008) Plant metabolites and nutritional quality of vegetables. J Food Sci 73:R48–R65

    Article  CAS  Google Scholar 

  5. Yamada T, Hayasaka S, Shibata Y, Ojima T, Saegusa T, Gotoh T, Ishikawa S, Nakamura Y, Kayaba K (2011) Frequency of citrus fruit intake is associated with the incidence of cardiovascular disease: the Jichi medical school cohort study. J Epidemiol 21:169–175

  6. Oboh G, Ademosun AO (2011) Phenolic extracts from grapefruit peels (Citrus paradisi) inhibit key enzymes linked with type 2 diabetes and hypertension. J Food Biochem 35:1703–1709

    Article  CAS  Google Scholar 

  7. Du QZ, Chen H (2010) The methoxyflavones in Citrus reticulata Blanco cv. Ponkan and their antiproliferative activity against cancer cells. Food Chem 119:567–572

    Article  CAS  Google Scholar 

  8. Zan LX, Zhao Y, Sun JW (2005) Extraction and content determination of catapol in the seeds of C. fargesii Bur. J Chinese Med Mater 28:26–27

    Google Scholar 

  9. Machida K, Hishinuma E, Kikuchi M (2004) Studies on the constituents of Catalpa species. IX. Iridoids from the fallen leaves of Catalpa ovata G DON. Chem Pharm Bull 52:618–621

    Article  CAS  Google Scholar 

  10. Machida K, Ando M, Yaoita Y, Kakuda R, Kikuchi M (2001) Studies on the constituents of Catalpa species. VI. Monoterpene glycosides from the fallen leaves of Catalpa ovata G Don. Chem Pharm Bull 49:732–736

    Article  CAS  Google Scholar 

  11. Machida K, Ogawa M, Kikuchi M (1998) Studies on the constituents of Catalpa species. II. Iridoids from Catalpa fructus. Chem Pharm Bull 46:1056–1057

    Article  CAS  Google Scholar 

  12. Fujiwara A, Mori T, Iida A, Ueda S, Hano Y, Nomura T, Tokuda H, Nishino H (1998) Antitumor-promoting naphthoquinones from Catalpa ovata. J Nat Prod 61:629–632

    Article  CAS  Google Scholar 

  13. Kanai E, Machida K, Kikuchi M (1996) Studies on the constituents of Catalpa species.1. Iridoids from Catalpa fructus. Chem Pharm Bull 44:1607–1609

    Article  CAS  Google Scholar 

  14. Yang G, Choi CH, Lee K, Lee M, Ham I, Choi HY (2013) Effects of Catalpa ovata stem bark on atopic dermatitis-like skin lesions in NC/Nga mice. J Ethnopharmacol 145:416–423

    Article  Google Scholar 

  15. Park BM, Hong SS, Lee C, Lee MS, Kang SJ, Shin YS, Jung JK, Hong JT, Kim Y, Lee MK, Hwang BY (2010) Naphthoquinones from Catalpa ovata and their inhibitory effects on the production of nitric oxide. Arch Pharm Res 33:381–385

    Article  CAS  Google Scholar 

  16. Cho JY, Kim HY, Choi GJ, Jang KS, Lim HK, Lim CH, Cho KY, Kim JC (2006) Dehydro-alpha-lapachone isolated from Catalpa ovata stems: activity against plant pathogenic fungi. Pest Manag Sci 62:414–418

    Article  CAS  Google Scholar 

  17. Kim SW, Choi SC, Choi EY, Kim KS, Oh JM, Lee HJ, Oh HM, Kim S, Oh BS, Kimm KC, Lee MH, Seo GS, Kim TH, Oh HC, Woo WH, Kim YS, Pae HO, Park DS, Chung HT, Jun CD (2004) Catalposide, a compound isolated from Catalpa ovata, attenuates induction of intestinal epithelial proinflammatory gene expression and reduces the severity of trinitrobenzene sulfonic acid-induced colitis in mice. Inflamm Bowel Dis 10:564–572

    Article  Google Scholar 

  18. Pae HO, Oh GS, Choi BM, Shin S, Chai KY, Oh H, Kim JM, Kim HJ, Jang SI, Chung HT (2003) Inhibitory effects of the stem bark of Catalpa ovata G. Don. (Bignoniaceae) on the productions of tumor necrosis factor-α and nitric oxide by the lipopolysaccharide-stimulated RAW 264.7 macrophages. J Ethnopharmacol 88:287–291

    Article  CAS  Google Scholar 

  19. Munoz-Mingarro D, Acero N, Llinares F, Pozuelo JM, de Mera AG, Vincenten JA, Morales L, Alguacil LF, Perez C (2003) Biological activity of extracts from Catalpa bignonioides Walt. (Bignoniaceae). J Ethnopharmacol 87:163–167

    Article  CAS  Google Scholar 

  20. An SJ, Pae HO, Oh GS, Choi BM, Jeong S, Jang SI, Oh H, Kwon TO, Song CE, Chung HT (2002) Inhibition of TNF-alpha, IL-1 beta, and IL-6 productions and NF-kappa B activation in lipopolysaccharide-activated RAW 264.7 macrophages by catalposide, an iridoid glycoside isolated from Catalpa ovata G. Don (Bignoniaceae). Int Immunopharmacol 2:1173–1181

    Article  CAS  Google Scholar 

  21. Oh CH, Kim NS, Yang JH, Lee H, Yang S, Park S, So UK, Bae JB, Eun JS, Jeon H, Lim JP, Kwon J, Kim YS, Shin TY, Kim DK (2010) Effects of isolated compounds from Catalpa ovata on the T cell-mediated immune responses and proliferation of leukemic cells. Arch Pharm Res 33:545–550

    Article  CAS  Google Scholar 

  22. Dvorska M, Zemlicka M, Muselik J, Karafiatova J, Suchy V (2007) Antioxidant activity of Catalpa bignonioides. Fitoterapia 78:437–439

    Article  Google Scholar 

  23. Suzuki R, Yasui Y, Kohno H, Miyamoto S, Hosokawa M, Miyashita K, Tanaka T (2006) Catalpa seed oil rich in 9t,11t,13c-conjugated linolenic acid suppresses the development of colonic aberrant crypt foci induced by azoxymethane in rats. Oncol Rep 16:989–996

    CAS  Google Scholar 

  24. Arimboor R, Arumughan C (2012) HPLC-DAD-MS/MS profiling of antioxidant flavonoid glycosides in sea buckthorn (Hippophae rhamnoides L.) seeds. Int J Food Sci Nutr 63:730–738

    Article  CAS  Google Scholar 

  25. Orak HH, Yagar H, Isbilir SS (2012) Comparison of antioxidant activities of juice, peel, and seed of pomegranate (Punica granatum L.) and inter-relationships with total phenolic, Tannin, anthocyanin, and flavonoid contents. Food Sci Biotechnol 21:373–387

    Article  CAS  Google Scholar 

  26. Zhang YJ, Wang DM, Yang LN, Zhou D, Zhang JF (2014) Purification and characterization of flavonoids from the leaves of Zanthoxylum bungeanum and correlation between their structure and antioxidant activity. Plos One 9(8):e105725

    Article  Google Scholar 

  27. Xu HY, Bao YH (2014) Response surface optimization of extraction and antioxidant activity of total flavonoids from seed shell of Juglans mandshurica. Food Sci Technol Res 20:715–724

    Article  CAS  Google Scholar 

  28. Shem-Tov Y, Badani H, Segev A, Hedvat I, Galili S, Hovav R (2012) Determination of total polyphenol, flavonoid and anthocyanin contents and antioxidant capacities of skins from peanut (Arachis hypogaea) lines with different skin colors. J Food Biochem 36:301–308

    Article  CAS  Google Scholar 

  29. Farombi EO, Akanni OO, Emerole GO (2002) Antioxidant and scavenging activities of flavonoid extract (kolaviron) of Garcinia kola seeds. Pharm Biol 40:107–116

    Article  CAS  Google Scholar 

  30. Jeon JS, Kang SW, Um BH, Kim CY (2014) Preparative isolation of antioxidant flavonoids from small black soybeans by centrifugal partition chromatography and sequential solid-phase extraction. Sep Sci Technol 49:2756–2764

    Article  CAS  Google Scholar 

  31. Yan RY, Cao YY, Chen CY, Dai HQ, Yu SX, Wei JL, Li H, Yang B (2011) Antioxidant flavonoids from the seed of Oroxylum indicum. Fitoterapia 82:841–848

    Article  CAS  Google Scholar 

  32. Segev A, Badani H, Kapulnik Y, Shomer I, Oren-Shamir M, Galili S (2010) Determination of polyphenols, flavonoids, and antioxidant capacity in colored chickpea (Cicer arietinum L.). J Food Sci 75:S115–S119

    Article  CAS  Google Scholar 

  33. Nehdi IA, Sbihi H, Tan CP, Al-Resayes SI (2013) Evaluation and characterisation of Citrullus colocynthis (L.) Schrad seed oil: comparison with Helianthus annuus (sunflower) seed oil. Food Chem 136:348–353

    Article  CAS  Google Scholar 

  34. Chirinos R, Zuloeta G, Pedreschi R, Mignolet E, Larondelle Y, Campos D (2013) Sacha inchi (Plukenetia volubilis): a seed source of polyunsaturated fatty acids, tocopherols, phytosterols, phenolic compounds and antioxidant capacity. Food Chem 141:1732–1739

    Article  CAS  Google Scholar 

  35. Jia Z, Tang MC, Wu JM (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559

    Article  Google Scholar 

  36. Brandwilliams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Food Sci Technol-leb 28:25–30

    Article  CAS  Google Scholar 

  37. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio Med 26:1231–1237

    Article  CAS  Google Scholar 

  38. Benjakul S, Visessanguan W, Phongkanpai V, Tanaka M (2005) Antioxidative activity of caramelisation products and their preventive effect on lipid oxidation in fish mince. Food Chem 90:231–239

    Article  CAS  Google Scholar 

  39. Yoshida H, Hirakawa Y, Murakami C, Mizushina Y, Yamade T (2003) Variation in the content of tocopherols and distribution of fatty acids within soya bean seeds (Glycine max L.). J Food Compos Anal 16:429–440

    Article  CAS  Google Scholar 

  40. Matthaus B, Ozcan MM (2006) Quantitation of fatty acids, sterols, and tocopherols in turpentine (Pistacia terebinthus Chia) growing wild in Turkey. J Agr Food Chem 54:7667–7671

    Article  Google Scholar 

  41. DACH (2008) Referenzwerte fur die Nahrstoffzufuhr. Umschau, Frankfurt am Main

    Google Scholar 

  42. Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56:365–379

    Article  CAS  Google Scholar 

  43. Goodstine SL, Zheng TZ, Holford TR, Ward BA, Carter D, Owens PH, Mayne ST (2003) Dietary (n-3)/(n-6) fatty acid ratio: possible relationship to premenopausal but not postmenopausal breast cancer risk in US women. J Nutr 133:1409–1414

    CAS  Google Scholar 

  44. Belitz HD, Grosch W (1999) Food chemistry, 2nd edn. Springer-Verlag, Berlin

    Book  Google Scholar 

  45. Gornas P, Siger A, Seglina D (2013) Physicochemical characteristics of the cold-pressed Japanese quince seed oil: new promising unconventional bio-oil from by-products for the pharmaceutical and cosmetic industry. Ind Crop Prod 48:178–182

    Article  CAS  Google Scholar 

  46. Slavin M, Yu LL (2012) A single extraction and HPLC procedure for simultaneous analysis of phytosterols, tocopherols and lutein in soybeans. Food Chem 135:2789–2795

    Article  CAS  Google Scholar 

  47. Hassanien MFR (2012) TOCOL and phytosterol composition of edible oils in the Egyptian market. J Food Process Pres 36:531–538

    Article  CAS  Google Scholar 

  48. Naz S, Sherazi STH, Talpur FN, Kara H, Uddin S, Khaskheli AR (2014) Chemical characterization of canola and sunflower oil deodorizer distillates. Pol J Food Nutr Sci 64:115–120

    CAS  Google Scholar 

  49. Bernal J, Mendiola JA, Ibanez E, Cifuentes A (2011) Advanced analysis of nutraceuticals. J Pharmaceut Biomed 55:758–774

    Article  CAS  Google Scholar 

  50. Fazio A, Plastina P, Meijerink J, Witkamp RF, Gabriele B (2013) Comparative analyses of seeds of wild fruits of Rubus and Sambucus species from Southern Italy: fatty acid composition of the oil, total phenolic content, antioxidant and anti-inflammatory properties of the methanolic extracts. Food Chem 140:817–824

    Article  CAS  Google Scholar 

  51. Ademiluyi AO, Oboh G (2011) Changes in phenolic content and antioxidant property of melon seed (Citrullus vulgaris Schred) fermented to produce “Ogiri”: a local condiment. Riv Ital Sostanze Gr 88:265–272

    CAS  Google Scholar 

  52. Amado IR, Franco D, Sanchez M, Zapata C, Vazquez JA (2014) Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology. Food Chem 165:290–299

    Article  CAS  Google Scholar 

  53. Farasat M, Khavari-Nejad RA, Nabavi SMB, Namjooyan F (2014) Antioxidant activity, total phenolics and flavonoid contents of some edible green seaweeds from northern coasts of the Persian Gulf. Iran J Pharm Res 13:163–170

    CAS  Google Scholar 

  54. McNab H, Ferreira ESB, Hulme AN, Quye A (2009) Negative ion ESI-MS analysis of natural yellow dye flavonoids—an isotopic labelling study. Int J Mass Spectrom 284:57–65

    Article  CAS  Google Scholar 

  55. Barnes JS, Schug KA (2014) Oxidative degradation of quercetin with hydrogen peroxide using continuous-flow kinetic electrospray-ion trap-time-of-flight mass spectrometry. J Agr Food Chem 62:4322–4331

    Article  CAS  Google Scholar 

  56. Cuyckens F, Claeys M (2004) Mass spectrometry in the structural analysis of flavonoids. J Mass Spectrom 39:1–15

    Article  CAS  Google Scholar 

  57. Fan JJ, Zhang L, Wen HM, Shan CX, Cui XB, Zhou HG, Chen HB (2013) Identification of flavonoids chemical constituents in Hedyotis diffusa by UFLC-Q-TOF/MS. Chinese J ExpTradit Med Formulae 19:62–65

    CAS  Google Scholar 

  58. Zhang WD, Wang XJ, Zhou SY, Gu Y, Wang R, Zhang TL, Gan HQ (2010) Determination of free and glucuronidated kaempferol in rat plasma by LC-MS/MS: application to pharmacokinetic study. J Chromatogr B 878:2137–2140

    Article  CAS  Google Scholar 

  59. Pop RM, Socaciu C, Pintea A, Buzoianu AD, Sanders MG, Gruppen H, Vincken JP (2013) UHPLC/PDA-ESI/MS analysis of the main berry and leaf flavonol glycosides from different Carpathian Hippophae rhamnoides L varieties. Phytochem Analysis 24:484–492

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Forestry Public Welfare Industry Research Project (Grant No. 201204603) and National Natural Science Foundation of China (Grant No. 31170274).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan-e Dong.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Hy., Zhu, Lr., Dong, Je. et al. Composition of Catalpa ovata Seed Oil and Flavonoids in Seed Meal as Well as Their Antioxidant Activities. J Am Oil Chem Soc 92, 361–369 (2015). https://doi.org/10.1007/s11746-015-2595-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-015-2595-6

Keywords

Navigation