Skip to main content
Log in

Interactions Between a Sulfobetaine-Type Zwitterionic Gemini Surfactant and Fatty Acid Alkanolamide in Aqueous Micellar Solution

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

The critical micelle concentration (CMC) of 1,2-bis[N-methyl-N-(3-sulfopropyl)-alkylammonium]-ethane betaine (GCS12) was measured using a tensiometric method in the presence of inorganic salts. Inorganic salt has a little impact on the surface tension and CMC of zwitterionic gemini surfactant. The CMC value of GCS12 is 0.07 mmol/L in distilled water, while all CMC values are around 0.04–0.05 mmol/L in the presence of 0.5 % NaCl, 2 % NaCl, and 2 % NaCl + 0.05 % CaCl2. The interactions between GCS12 and non-ionic surfactant lauric acid diethanolamide (CDA) were investigated by measuring the CMC of their mixtures at different molar ratios. CDA and GCS12 form mixed micelles and exhibit synergism when the mole fraction of CDA is higher than 0.25. Both the steric effect of the head group and GCS12 charge affect the formation and stability of the mixed micelles. Small amounts of GCS12 with a lower CMC penetrate into the micelle of nonionic surfactant with a higher CMC and reduce its degree of hydration inducing an attractive interaction between the two surfactants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rosen MJ, Wang H, Shen P, Zhu Y (2005) Ultralow interfacial tension for enhanced oil recovery at very low surfactant concentration. Langmuir 21:3479

    Article  Google Scholar 

  2. Al-Ashraf T, Ahmed A, Suttar EA (2002) Producing ultralow interfacial tension at the oil-water interface. Pet Sci Technol 20:773

    Article  Google Scholar 

  3. Gogoi SB (2011) Adsorption–desorption of surfactant for enhanced oil recovery. Transp Porous Med 90:589–604

    Article  CAS  Google Scholar 

  4. Shaddel S, Tabatabae-Nejad SA (2015) Alkali/surfactant improved low-salinity water flooding. Transp Porous Med 106:621–642

    Article  CAS  Google Scholar 

  5. Alam MS, Siddiq AM, Kamely N (2015) Micellization behavior of a cationic gemini surfactant, pentanediyl-1,5-bis(dimethylcetylammonium bromide): effect of asparagine and temperature. J Disp Sci Technol 36:1134–1139

    Article  CAS  Google Scholar 

  6. Rosen MJ, Tracy DJ (1998) Gemini surfactants. J Surfactants Deterg 1:547–554

    Article  CAS  Google Scholar 

  7. Zana R, Xia J (eds) (2003) Gemini surfactants: synthesis, interfacial and solution-phase behavior, and applications. Marcel Dekker, New York

    Google Scholar 

  8. Liu GY, Gu DM, Liu HY (2012) Thermodynamic properties of micellization of sulfobetaine-type zwitterionic gemini surfactants in aqueous solutions––a free energy perturbation study. J Colloid Interface Sci 375:148–153

    Article  CAS  Google Scholar 

  9. Yang QS, Wang DM, Zheng YC (2014) Development of alkaline water and surfactant composite flooding systems in Linnan Oilfield. Oilfield Chem 31:568–571

    CAS  Google Scholar 

  10. Alargova RG, Kochijashky II, Sierra ML (2001) Mixed micellization of dimeric (gemini) surfactants and conventional surfactants. II. CMC and micelle aggregation numbers for various mixtures. J Colloid Interface Sci 235:119–129

    Article  CAS  Google Scholar 

  11. Zana R, Levy H, Kwetkat K (1998) Mixed micellization of dimeric (gemini) surfactants and conventional surfactants. I. Mixtures of an anionic dimeric surfactant and of the nonionic surfactants C12E5 and C12E8. J Colloid Interface Sci 197:370–376

    Article  CAS  Google Scholar 

  12. Du X, Lu Y, Li L, Kou J, Yang Z (2007) Mixed micellization of alkylbenzene sulfonate gemini surfactant Ia and nonionic surfactant C10E6 in aqueous solution. Acta Phys Chim Sin 23(2):173–176

    Article  CAS  Google Scholar 

  13. Khan IA, Mohammad R, Alam MS (2010) Surface properties and mixed micellization of cationic gemini surfactants with ethyleneamines. J Chem Eng Data 55:370–380

    Article  CAS  Google Scholar 

  14. Lakra J, Tikariha D, Yadav T (2014) Mixed micellization of gemini and cationic surfactants: physicochemical properties and solubilization of polycyclic aromatic hydrocarbons. Colloids Surf A 451:56–65

    Article  CAS  Google Scholar 

  15. Singh K, Marangoni DG (2007) Synergistic interactions in the mixed micelles of cationic gemini with zwitterionic surfactants: the pH and spacer effect. J Colloid Interface Sci 315:620–626

    Article  CAS  Google Scholar 

  16. Ghosh S, Khatua D, Dey J (2011) Interaction between zwitterionic and anionic surfactants: spontaneous formation of zwitterionic vesicles. Langmuir 27:5184–5192

    Article  CAS  Google Scholar 

  17. Xi Z, Feng Y (2010) Synthesis and properties of alkylbetaine zwitterionic gemini surfactants. J Surfact Deterg 13:51–57

    Article  Google Scholar 

  18. Yoshimura T, Ichinokawa T, Kaji M et al (2006) Synthesis and surface-active properties of sulfobetaine-type zwitterionic gemini surfactants. Colloid Surf A 273:208–212

    Article  CAS  Google Scholar 

  19. Rais F, Baati R, Dama NK (2008) The use of a eutectic mixture of olive pomace oil fatty amides to easily prepare sulfated amides applied as lime soap dispersants. J Am Oil Chem Soc 85:869–877

    Article  CAS  Google Scholar 

  20. Rubingh DN (1979) Solution chemistry of surfactants. Plenum Press, New York

    Google Scholar 

  21. Clint JH (1975) Micellization of mixed nonionic surface active agents. J Chem Soc Faraday Trans 1 71:1327–1334

    Article  CAS  Google Scholar 

  22. Holland PM, Rubingh DN (1983) Nonideal multicomponent mixed micelle model. J Phys Chem 87:1984–1990

    Article  CAS  Google Scholar 

  23. Huang L, Somasundaran P (1997) Theoretical model and phase behavior for binary surfactant mixtures. Langmuir 13:6683–6688

    Article  CAS  Google Scholar 

  24. Rodenas E, Valiente M, Villafruela MS (1999) Different theoretical approaches for the study of the mixed tetraethylene glycol mono-n-dodecyl etherhexadecyltrimethylammonium bromide micelles. J Phys Chem 87:4549–4554

    Article  Google Scholar 

  25. Ren ZH, Luo Y, Zheng YC, Shi DP, Mei P, Li FS (2014) Interacting behavior between amino sulfonate surfactant and octylphenol polyoxyethylene ether (10) in aqueous solution. J Solut Chem 43:853–869

    Article  CAS  Google Scholar 

  26. Motomura K, Yamanaka M, Aratono M (1984) Thermodynamic consideration of the mixed micelle of surfactants. Colloid Polym Sci 26(12):945–948

    Google Scholar 

  27. Motomura K, Aratono M (1993) Mixed surfactant systems. Marcel Decker, New York

    Google Scholar 

  28. Rosen MJ (1994) Predicting synergism in binary mixtures of surfactants. Progr Colloid Polym Sci 95:39–47

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support by the National Natural Science Foundation of China (51474035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yancheng Zheng.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Ren, Z., Mei, P. et al. Interactions Between a Sulfobetaine-Type Zwitterionic Gemini Surfactant and Fatty Acid Alkanolamide in Aqueous Micellar Solution. J Surfact Deterg 19, 283–288 (2016). https://doi.org/10.1007/s11743-016-1786-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-016-1786-y

Keywords

Navigation