Skip to main content
Log in

Mixed Systems Based on Erucyl Amidopropyl Betaine and Nanoparticles: Self-Organization and Rheology

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

The aggregation behavior and flow characteristics of systems based on zwitterionic surfactant, erucyl amidopropyl betaine, silica and alumina nanoparticles in a wide range of surfactant concentrations from molecular to micellar solutions were studied using surface tensiometry, conductometry, dynamic and electrophoretic light scattering, and rheology techniques. The adsorption of zwitterionic surfactant molecules occurs on both positively and negatively charged surfaces via an electrostatic interaction mechanism. As a result, addition of a small amount silica nanoparticles (0.5–0.8 wt%) increases the surfactant solution's viscosity by more than two times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Manthe RL, Foy SP, Krishnamurthy N, Sharma B, Labhasetwar V (2010) Tumor ablation and nanotechnology. Mol Pharm 7:1880–1898

    Article  CAS  Google Scholar 

  2. Sládková M, Vlcˇková B, Pavel I, Šišková K, Šlouf M (2009) Surface-enhanced Raman scattering from a single molecularly bridged silver nanoparticle aggregate. J Mol Struct 924–926:567–570

    Article  Google Scholar 

  3. Thong-On B, Rutnakornpituk B, Wichai U, Rutnakornpituk M (2012) Magnetite nanoparticle coated with amphiphilic bilayer surfactant of polysiloxane and poly(poly(ethylene glycol) methacrylate). J Nanopart Res 14:953–964

    Article  Google Scholar 

  4. Russel WB, Saville DA, Schowalter WR (1989) Colloidal dispersions. Cambridge University Press, Cambridge

    Book  Google Scholar 

  5. Hung C-Y, Marshall AF, Kim D-K, Nix WD, Harris JS Jr, Kiehl RA (1999) Strain directed assembly of nanoparticle arrays within a semiconductor. J Nanopart Res 1:329–347

    Article  CAS  Google Scholar 

  6. Schroder DK (1998) Semiconductor material and device characterization. Wiley, New York

    Google Scholar 

  7. Ali I (2012) New generation adsorbents for water treatment. Chem Rev 112:5073–5091

    Article  CAS  Google Scholar 

  8. De M, Ghosh PS, Rotello VM (2008) Applications of nanoparticles in biology. Adv Mater 20:4225–4241

    Article  CAS  Google Scholar 

  9. Fernandes SC, de Souza FD, de Souza BS, Nome F, Vieira IC (2012) Gold nanoparticles dispersed in zwitterionic surfactant for peroxidase immobilization in biosensor construction. Sens Actuators B 173:483–490

    Article  Google Scholar 

  10. Alexis F, Pridgen EM, Langer R, Farokhzad OC (2010) Nanoparticle technologies for cancer therapy. Handb Exp Pharmacol 197:55–86

    Article  CAS  Google Scholar 

  11. Brannon-Peppas L, Blanchette JO (2012) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 64:206–2123

    Article  Google Scholar 

  12. Gupta VKN, Mehra A, Thaokar R (2012) Worm-like micelles as templates: formation of anisotropic silver halide nanoparticles. Colloids Surf A 393:73–80

    Article  CAS  Google Scholar 

  13. Salkar RA, Jeevanandam P, Kataby G, Aruna ST, Koltypin Yu, Palchik O, Gedanken A (2000) Elongated copper nanoparticles coated with a zwitterionic surfactant. J Phys Chem B 104:893–897

    Article  CAS  Google Scholar 

  14. Zi X, Wang R, Liu L, Dai H, Zhang G, He H (2011) Cetyltrimethylammonium bromide assisted preparation and characterization of pd nanoparticles with spherical, worm-like, and network-like morphologies. Chin J Catal 32:827–835

    Article  CAS  Google Scholar 

  15. Gao GM, Zou H-F, Liu DR, Miao LN, Ji GJ, Gan SC (2009) Influence of surfactant surface coverage and aging time on physical properties of silica nanoparticles. Colloids Surf A 350:33–37

    Article  CAS  Google Scholar 

  16. Praus P, Dvorský R, Horínková P, Pospíšil M, Kovár P (2012) Precipitation, stabilization and molecular modeling of ZnS nanoparticles in the presence of cetyltrimethylammonium bromide. J Colloid Interface Sci 377:58–63

    Article  CAS  Google Scholar 

  17. Kumar P, Bohidar HB (2010) Aqueous dispersion stability of multi-carbon nanoparticles in anionic, cationic, neutral, bile salt and pulmonary surfactant solutions. Colloids Surf A 361:13–24

    Article  CAS  Google Scholar 

  18. Kumar S, Aswal VK, Kohlbrecher J (2012) Size-dependent interaction of silica nanoparticles with different surfactants in aqueous solution. Langmuir 28:9288–9297

    Article  CAS  Google Scholar 

  19. He Sh, Chen H, Guo Z, Wang B, Tang Ch, Feng Yu (2013) High-concentration silver colloid stabilized by a cationic gemini surfactant. Colloids Surf A 429:98–105

    Article  CAS  Google Scholar 

  20. Xu F, Zhang Q, Gao Z (2013) Simple one-step synthesis of gold nanoparticles with controlled size using cationic gemini surfactants as ligands: effect of the variations in concentrations and tail lengths. Colloids Surf A 417:201–210

    Article  CAS  Google Scholar 

  21. Chen C-N, Huang C-T, Tseng WJ, Wei M-H (2010) Dispersion and rheology of surfactant-mediated silver nanoparticle suspensions. Appl Surf Sci 257(2):650–655

    Article  CAS  Google Scholar 

  22. Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan W (2001) Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 17:2900–2906

    Article  CAS  Google Scholar 

  23. Sharma KP, Aswal VK, Kumaraswamy G (2010) Adsorption of nonionic surfactant on silica nanoparticles: structure and resultant interparticle interactions. Phys Chem B 114:10986–10994

    Article  CAS  Google Scholar 

  24. Bandyopadhyay R, Sood AK (2005) Effect of silica colloids on the rheology of viscoelastic gels formed by the surfactant cetyl trimethylammonium tosylate. J Colloid Interface Sci 283:585–591

    Article  CAS  Google Scholar 

  25. Helgeson ME, Hodgdon TK, Kaler EW, Wagner NJ, Vethamuthu M, Ananthapadmanabhan KP (2010) Formation and rheology of viscoelastic “double networks” in wormlike micelle—nanoparticle mixtures. Langmuir 26:8049–8060

    Article  CAS  Google Scholar 

  26. Nettesheim F, Liberatore MW, Hodgdon TK, Wagner NJ, Kaler EW, Vethamuthu M (2008) Influence of nanoparticle addition on the properties of wormlike micellar solutions. Langmuir 24:7718–7726

    Article  CAS  Google Scholar 

  27. Kamibayashi M, Ogura H, Otsubo Y (2008) Shear-thickening flow of nanoparticle suspensions flocculated by polymer bridging. J Colloid Interface Sci 321:294–301

    Article  CAS  Google Scholar 

  28. Yang J, Zhao J-J, Han C-R, Duan JF (2014) Keys to enhancing mechanical properties of silica nanoparticle composites hydrogels: the role of network structure and interfacial interactions. Compos Sci Technol 95:1–7

    Article  CAS  Google Scholar 

  29. Bluestein BR, Hilton CL (1982) Amphoteric surfactants. Marcel Dekker, New York

    Google Scholar 

  30. Cates ME (1987) Reptation of living polymers: dynamics of entangled polymers in the presence of reversible chain-scission reactions. Macromolecules 20:2289–2296

    Article  CAS  Google Scholar 

  31. Cates ME, Candau SJ (1990) Statics and dynamics of worm-like surfactant micelles. J Phys Condens Matter 2:6869–6892

    Article  CAS  Google Scholar 

  32. Cates ME, Turner MS (1990) Flow-induced gelation of rodlike micelles. Europhys Lett 11(7):681–686

    Article  Google Scholar 

  33. Magid LJ (1998) The surfactant-polyelectrolyte analogy. J Phys Chem B 102:4064–4074

    Article  CAS  Google Scholar 

  34. Rehage H, Hofman H (1991) Viscoelastic surfactant solutions: model systems for rheological research. Mol Phys 74:933–973

    Article  CAS  Google Scholar 

  35. Kumar R, Kalur GC, Ziserman L, Danino D, Raghavan SR (2007) Wormlike micelles of a C22-tailed zwitterionic betaine surfactant: from viscoelastic solutions to elastic gels. Langmuir 23:12849–12856

    Article  CAS  Google Scholar 

  36. Maitland GC (2000) Oil and gas production. Curr Opin Colloid Interface Sci 5:301–311

    Article  CAS  Google Scholar 

  37. Ridout G, Hinz RS, Hostynek JJ, Reddy AK, Wiersema RJ, Hodson CD, Lorence CR, Guy RH (1991) The effects of zwitterionic surfactants on skin barrier function. Fundam Appl Toxicol 16:41–50

    Article  CAS  Google Scholar 

  38. Chang SY, Zheng N-Y, Chen C-Sh, Chen C-D, Chen Y-Y, Wang CRC (2007) Analysis of peptides and proteins affinity-bound to iron oxide nanoparticles by MALDI MS. J Am Soc Mass Spectrom 18:910–918

    Article  CAS  Google Scholar 

  39. Schulze C, Schaefer UF, Ruge CA, Wohlleben W, Lehr C-M (2011) Interaction of metal oxide nanoparticles with lung surfactant protein A. Eur J Pharm Biopharm 77:376–383

    Article  CAS  Google Scholar 

  40. Nam J, Won N, Bang J, Jin H, Park J, Jung S, Jung S, Park Y, Kim S (2013) Surface engineering of inorganic nanoparticles for imaging and therapy. Adv Drug Deliv Rev 65:622–648

    Article  CAS  Google Scholar 

  41. Wang Z, Lam A, Acosta E (2013) Suspensions of iron oxide nanoparticles stabilized by anionic surfactants. J Surfactants Deterg 16:397–407

    Article  CAS  Google Scholar 

  42. Atta AM, Al-Lohedan HA (2014) Influence of nonionic rosin surfactants on surface activity of silica particles and stability of oil in water emulsions. J Surfactants Deterg 17:1043–1053

    Article  CAS  Google Scholar 

  43. Gaynanova GA, Valiakhmetova AR, Kuryashov DA, Kudryashova YuR, Lukashenko SS, Syakaev VV, Latypov ShK, Bukharov SV, Bashkirtseva NYu, Zakharova LYa (2013) The self-organization and functional activity of binary system based on erucyl amidopropyl betaine—alkylated polyethyleneimine. Chem Phys Lett 588:145–149

    Article  CAS  Google Scholar 

  44. Fan A, Somasundaran P, Turro NJ (1997) Adsorption of alkyltrimethylammonium bromides on negatively charged alumina. Langmuir 13:506–510

    Article  CAS  Google Scholar 

  45. Somasundaran P, Fuerstenau DW (1966) Mechanisms of alkyl sulfonate adsorption at the alumina-water interface. J Phys Chem 70:90–96

    Article  CAS  Google Scholar 

  46. Wang W, Gu B, Liang L, Hamilton WA (2004) Adsorption and structural arrangement of cetyltrimethylammonium cations at the silica nanoparticle-water interface. J Phys Chem B 108:17477–17483

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Russian Foundation for Basic Research (Grant No. 15-43-02490) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulnara A. Gaynanova.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaynanova, G.A., Valiakhmetova, A.R., Kuryashov, D.A. et al. Mixed Systems Based on Erucyl Amidopropyl Betaine and Nanoparticles: Self-Organization and Rheology. J Surfact Deterg 18, 965–971 (2015). https://doi.org/10.1007/s11743-015-1743-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-015-1743-1

Keywords

Navigation