Skip to main content
Log in

Interfacial Rheology of Mixed Surfactants at the Oil/Water Interface

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

The interfacial rheology of surfactant mixtures (SBT and Tween® 80) at the oil/water interface is investigated using toluene as a model oil. The surfactant ratio in the mixed system has an important impact on the interfacial properties. After adding Tween® 80, the interfacial tension and modulus of SBT show remarkable changes. Compared with the individual SBT or Tween® 80 systems, the interfacial properties of the mixed surfactant system improve, especially at a 1:1 ratio. At the optimum ratio, synergistic adsorption takes place resulting in improved asphalt emulsion stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kim Y, Im S, Lee HD (2011) Impacts of curing time and moisture content on engineering properties of cold in-place recycling mixtures using foamed or emulsified asphalt. J Mater Civ Eng 23:542–553

    Article  CAS  Google Scholar 

  2. Zhang LY, Lawrence S, Xu Z, Masliyah JH (2003) Studies of Athabasca asphaltene Langmuir films at air-water interface. J Colloid Interface Sci 264:128–140

    Article  CAS  Google Scholar 

  3. Zhang LY, Xu Z, Masliyah JH (2003) Langmuir and Langmuir-Blodgett films of mixed asphaltene and a demulsifier. Langmuir 19:9730–9741

    Article  CAS  Google Scholar 

  4. Spiecker PM, Kilpatrick PK (2004) Interfacial rheology of petroleum asphaltenes at the oil-water interface. Langmuir 20:4022–4032

    Article  CAS  Google Scholar 

  5. Li M, Xu M, Ma Y, Wu Z, Christy A (2002) Interfacial film properties of asphaltenes and resins. Fuel 21:1847–1853

    Article  Google Scholar 

  6. Bouriat P, El Kerri N, Graciaa A, Lachaise A (2004) Properties of a two-dimensional asphaltene network at the water-cyclohexane interface deduced from dynamic tensiometry. Langmuir 20:7459–7464

    Article  CAS  Google Scholar 

  7. Aske N, Orr R, Sjöblom J, Kallevik H (2004) Interfacial properties of water-crude oil systems using the oscillating pendant drop. Correlations to asphaltene solubility by near infrared spectroscopy. J Disp Sci Technol 25:263–275

    Article  CAS  Google Scholar 

  8. Fainerman VB, Lucassen-Reynders EH (2002) Adsorption of single and mixed ionic surfactants at fluid interfaces. Adv Colloid Interface Sci 96:295–323

    Article  CAS  Google Scholar 

  9. Lucassen-Reynders EH, Cagna A, Lucassen J (2001) Gibbs elasticity, surface dilational modulus and diffusional relaxation in nonionic surfactant monolayers. Colloids Surf A 186:63–72

    Article  CAS  Google Scholar 

  10. Fan Y, Simon S, Sjöblom J (2010) Influence of nonionic surfactants on the surface and interfacial film properties of asphaltenes investigated by Langmuir balance and brewster angle microscopy. Langmuir 26:10497–10505

    Article  CAS  Google Scholar 

  11. Kamal MS, Sultan AS, Al-Mubaiyedh UA, Hussien IA, Pabon M (2014) Evaluation of rheological and thermal properties of a new fluorocarbon surfactant-polymer system for EOR applications in high-temperature and high-salinity oil reservoirs. J Surf Deterg. doi:10.1007/s11743-014-1600-7

    Google Scholar 

  12. Dicharry C, Arla D, Sinquin A, Graciaa A, Bouriat P (2006) Stability of water/crude oil emulsions based on interfacial dilatational rheology. J Colloid Interface Sci 297:785–791

    Article  CAS  Google Scholar 

  13. Bauget F, Langevin D, Lenormand R (2001) Dynamic surface properties of asphaltenes and resins at the oil-air interface. J Colloid Interface Sci 239:501–508

    Article  CAS  Google Scholar 

  14. Sztukowski DM, Yarranton HW (2005) Rheology of asphaltene–toluene/water interfaces. Langmuir 21:11651–11658

    Article  CAS  Google Scholar 

  15. Kang W, Xu B, Wang Y, Li Y, Shan X, An F, Liu J (2011) Stability mechanism of W/O crude oil emulsion stabilized by polymer and surfactant. Colloids Surf A 384:555–560

    Article  CAS  Google Scholar 

  16. Ortiz DP, Baydak EN, Yarranton HW (2010) Effect of surfactants on interfacial films and stability of water-in-oil emulsions stabilized by asphaltenes. J Colloid Interface Sci 351:542–555

    Article  CAS  Google Scholar 

  17. Rane JP, Harbottle D, Pauchard V, Couzis A, Banerjee S (2012) Adsorption kinetics of asphaltenes at the oil–water interface and nanoaggregation in the bulk. Langmuir 28:9986–9995

    Article  CAS  Google Scholar 

  18. Aske N, Orr R, Sjöblom J (2002) Dilatational elasticity moduli of water/crude oil interfaces using the oscillating pendant drop. J Disp Sci Technol 23:809–825

    Article  CAS  Google Scholar 

  19. Freer EM, Svitova T, Radke CJ (2003) The role of interfacial rheology in reservoir mixed wettability. J Petrol Sci Eng 39:137–158

    Article  CAS  Google Scholar 

  20. Ravera F, Ferrari M, Santini E, Liggieri L (2005) Influence of surface processes on the dilational viscoelasticity of surfactant solutions. Adv Colloid Interface Sci 117:75–100

    Article  CAS  Google Scholar 

  21. Stubenrauch C, Fainerman VB, Aksenenko EV, Miller R (2005) Adsorption behavior and dilational rheology of the cationic alkyl trimethylammonium bromides at the water/air interface. J Phys Chem B 109:1505–1509

    Article  CAS  Google Scholar 

  22. He F, Xu G, Pang J, Ao M, Han T, Gong H (2011) Effect of amino acids on aggregation behaviors of sodium deoxycholate at air/water surface: surface tension and oscillating bubble studies. Langmuir 27:538–545

    Article  CAS  Google Scholar 

  23. Wu D, Xu GY, Feng YJ, Li YM (2007) Aggregation behaviors of gelatin with cationic gemini surfactant at air/water interface. Int J Biol Macromol 40:345–350

    Article  CAS  Google Scholar 

  24. Stubenrauch C, Miller R (2004) Stability of foam films and surface rheology: an oscillating bubble study at low frequencies. J Phys Chem B 108:6412–6421

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from the scientific research project of Shanxi province Communication Department (Contract Nos. 2013-1-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyu Pang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11743_2015_1715_MOESM1_ESM.doc

Supplementary material 1 (DOC 2459 kb). Figure S1. Variation of dilatational modulus as a function of frequency with different ratios of SBT/Tween® 80 at (a) 0:1, (b) 1:0, (c) 1:1, (d) 2:1, (e) 3:1, (f) 4:1 at 25 °C. Figure S2. Variation of elastic (solid point) and viscous (hollow point) modulus as a function of frequency with different ratios of SBT/Tween® 80 at (a) 0:1, (b) 1:0, (c) 1:1, (d) 2:1, (e) 3:1, (f) 4:1. All measurements performed at 25 °C

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, J., Du, S., Chang, R. et al. Interfacial Rheology of Mixed Surfactants at the Oil/Water Interface. J Surfact Deterg 18, 747–753 (2015). https://doi.org/10.1007/s11743-015-1715-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-015-1715-5

Keywords

Navigation