Skip to main content
Log in

Majority-rule opinion dynamics with differential latency: a mechanism for self-organized collective decision-making

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

Collective decision-making is a process whereby the members of a group decide on a course of action by consensus. In this paper, we propose a collective decision-making mechanism for robot swarms deployed in scenarios in which robots can choose between two actions that have the same effects but that have different execution times. The proposed mechanism allows a swarm composed of robots with no explicit knowledge about the difference in execution times between the two actions to choose the one with the shorter execution time. We use an opinion formation model that captures important elements of the scenarios in which the proposed mechanism can be used in order to predict the system’s behavior. The model predicts that when the two actions have different average execution times, the swarm chooses with high probability the action with the shorter average execution time. We validate the model’s predictions through a swarm robotics experiment in which robot teams must choose one of two paths of different length that connect two locations. Thanks to the proposed mechanism, a swarm made of robot teams that do not measure time or distance is able to choose the shorter path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bonani, M., Longchamp, V., Magnenat, S., Rétornaz, P., Burnier, D., Roulet, G., Vaussard, F., Bleuler, H., & Mondada, F. (2010). The MarXbot, a miniature mobile robot opening new perspectives for the collective-robotic research. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS 2010) (pp. 4187–4193). Piscataway: IEEE Press.

    Google Scholar 

  • Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Theraulaz, G., & Bonabeau, E. (2001). Self-organization in biological systems. Princeton: Princeton University Press.

    Google Scholar 

  • Campo, A., Garnier, S., Dédriche, O., Zekkri, M., & Dorigo, M. (2010a). Self-organized discrimination of resources. PLoS ONE, 6(5), e19888.

    Article  Google Scholar 

  • Campo, A., Gutiérrez, Á., Nouyan, S., Pinciroli, C., Longchamp, V., Garnier, S., & Dorigo, M. (2010b). Artificial pheromone for path selection by a foraging swarm of robots. Biological Cybernetics, 103(5), 339–352.

    Article  Google Scholar 

  • Castellano, C., Fortunato, S., & Loreto, V. (2009). Statistical physics of social dynamics. Reviews of Modern Physics, 81(2), 591–646.

    Article  Google Scholar 

  • Chakrabarti, B., Chakraborti, A., & Chatterjee, A. (Eds.) (2006). Econophysics and sociophysics: trends and perspectives. Weinheim: Wiley-VCH.

    Google Scholar 

  • Couzin, I. D., & Krause, J. (2003). Self-organization and collective behavior in vertebrates. Advances in the Study of Behavior, 32, 1–75.

    Article  Google Scholar 

  • Ducatelle, F., Di Caro, G., & Gambardella, L. M. (2010). Cooperative self-organization in a heterogeneous swarm robotic system. In Proceedings of the genetic and evolutionary computation conference (GECCO 2010) (pp. 87–94). New York: ACM.

    Google Scholar 

  • Ferrante, E., Brambilla, M., Birattari, M., & Dorigo, M. Socially-mediated negotiation for obstacle avoidance in collective transport. In Proceedings of the 10th international symposium on distributed autonomous robotic systems (DARS 2010). Berlin: Springer (2011, to appear).

  • Fujisawa, R., Dobata, S., Kubota, D., Imamura, H., & Matsuno, F. (2008a). Dependency by concentration of pheromone trail for multiple robots. In LNCS: Vol. 5217. Proceedings of the international conference on ant colony optimization and swarm intelligence (ANTS 2008) (pp. 283–290). Berlin: Springer.

    Chapter  Google Scholar 

  • Fujisawa, R., Imamura, H., Hashimoto, T., & Matsuno, F. (2008b). Communication using pheromone field for multiple robots. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS 2008) (pp. 1391–1396). Piscataway: IEEE Press.

    Google Scholar 

  • Galam, S. (1986). Majority rule, hierarchical structures, and democratic totalitarianism: A statistical approach. Journal of Mathematical Psychology, 30(4), 426–434.

    Article  MATH  Google Scholar 

  • Garnier, S., Tache, F., Combe, M., Grimal, A., & Theraulaz, G. (2007). Alice in pheromone land: An experimental setup for the study of ant-like robots. In Proceedings of the IEEE swarm intelligence symposium (SIS 2007) (pp. 37–44). Piscataway: IEEE Press.

    Chapter  Google Scholar 

  • Garnier, S., Gautrais, J., Asadpour, M., Jost, C., & Theraulaz, G. (2009). Self-organized aggregation triggers collective decision making in a group of cockroach-like robots. Adaptive Behavior, 17(2), 109–133.

    Article  Google Scholar 

  • Goss, S., Aron, S., Deneubourg, J.-L., & Pasteels, J. M. (1989). Self-organized shortcuts in the argentine ant. Naturwissenschaften, 76(12), 579–581.

    Article  Google Scholar 

  • Granovetter, M. (1978). Threshold models of collective behavior. American Journal of Sociology, 83(6), 1420–1443.

    Article  Google Scholar 

  • Gutiérrez, Á., Campo, A., Monasterio-Huelin, F., Magdalena, L., & Dorigo, M. (2010). Collective decision-making based on social odometry. Neural Computing & Applications, 19(6), 807–823.

    Article  Google Scholar 

  • Hamman, H., Szymanski, M., & Worn, H. (2007). Orientation in a trail network by exploiting its geometry for swarm robotics. In Proceedings of the IEEE swarm intelligence symposium (SIS 2007) (pp. 310–315). Piscataway: IEEE Press.

    Chapter  Google Scholar 

  • Helbing, D. (2010). Quantitative sociodynamics. Stochastic methods and models of social interaction processes (2nd ed.) Berlin: Springer.

    MATH  Google Scholar 

  • Herianto, H., & Kurabayashi, D. (2009). Realization of an artificial pheromone system in random data carriers using RFID tags for autonomous navigation. In IEEE international conference on robotics and automation (ICRA 2009) (pp. 2288–2293). Piscataway: IEEE Press.

    Chapter  Google Scholar 

  • Krapivsky, P. L., & Redner, S. (2003). Dynamics of majority rule in two-state interacting spin systems. Physical Review Letters, 90(23), 238701.

    Article  Google Scholar 

  • Kuwana, Y., Shimoyama, I., & Miura, H. (1995). Steering control of a mobile robot using insect antennae. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS 1995) (Vol. 2, pp. 530–535), Piscataway: IEEE Press.

    Google Scholar 

  • Lambiotte, R., Saramäki, J., & Blondel, V. D. (2009). Dynamics of latent voters. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 79(4), 046107.

    Article  Google Scholar 

  • Mamei, M., & Zambonelli, F. (2005). Physical deployment of digital pheromones through RFID technology. In Proceedings of the international joint conference on autonomous agents and multiagent systems (AAMAS 2005) (pp. 1353–1354). New York: ACM.

    Chapter  Google Scholar 

  • Mayet, R., Roberz, J., Schmickl, T., & Crailsheim, K. (2010). Antbots: A feasible visual emulation of pheromone trails for swarm robots. In LNCS: Vol. 6234. Proceedings of the international conference on swarm intelligence (ANTS 2010) (pp. 84–94). Berlin: Springer.

    Google Scholar 

  • Montes de Oca, M. A., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M., Dorigo, M. (2011). Majority-rule opinion dynamics with differential latency: Supplementary information webpage. http://iridia.ulb.ac.be/supp/IridiaSupp2010-014/.

  • Nagasawa, S., Kanzaki, R., & Shimoyama, I. (1999). Study of a small mobile robot that uses living insect antennae as pheromone sensors. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS 1999) (pp. 555–560). Piscataway: IEEE Press.

    Google Scholar 

  • Nouyan, S., Campo, A., & Dorigo, M. (2008). Path formation in a robot swarm: self-organized strategies to find your way home. Swarm Intelligence, 2(1), 1–23.

    Article  Google Scholar 

  • Nouyan, S., Gross, R., Bonani, M., Mondada, F., & Dorigo, M. (2009). Teamwork in self-organized robot colonies. IEEE Transactions on Evolutionary Computation, 13(4), 695–711.

    Article  Google Scholar 

  • Nowak, M. A. (2006). Five rules for the evolution of cooperation. Science, 314(5805), 1560–1563.

    Article  Google Scholar 

  • Parker, C. A. C., & Zhang, H. (2009). Cooperative decision-making in decentralized multiple-robot systems: The best-of-N problem. IEEE/ASME Transactions on Mechatronics, 14(2), 240–251.

    Article  Google Scholar 

  • Parker, C. A. C., & Zhang, H. (2010). Collective unary decision-making by decentralized multiple-robot systems applied to the task-sequencing problem. Swarm Intelligence, 4(3), 199–220.

    Article  Google Scholar 

  • Payton, D., Daily, M., Estowski, R., Howard, M., & Lee, C. (2001). Pheromone robotics. Autonomous Robots, 11(3), 319–324.

    Article  MATH  Google Scholar 

  • Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Stirling, T., Gutiérrez, Á., Gambardella, L. M., & Dorigo, M. (2011, in press). ARGoS: a modular, multi-engine simulator for heterogeneous swarm robotics. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS 2011). Piscataway: IEEE Press.

  • Roberts, J., Stirling, T., Zufferey, J., & Floreano, D. (2009). 2.5D infrared range and bearing system for collective robotics. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS 2009) (pp. 3659–3664). Piscataway: IEEE Press.

    Google Scholar 

  • Russell, R. A. (1999). Ant trails—an example for robots to follow? In Proceedings of the IEEE international conference on robotics and automation (ICRA 1999) (pp. 2698–2703). Piscataway: IEEE Press.

    Google Scholar 

  • Scheidler, A. (2011). Dynamics of majority rule with differential latencies. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 83(3), 031116.

    Article  Google Scholar 

  • Schelling, T. (1978). Micromotives and macrobehavior. New York: Norton.

    Google Scholar 

  • Schmickl, T., & Crailsheim, K. (2008). Trophallaxis within a robotic swarm: bio-inspired communication among robots in a swarm. Autonomous Robots, 25(1–2), 171–188.

    Article  Google Scholar 

  • Sugawara, K., Kazama, T., & Watanabe, T. (2004). Foraging behavior of interacting robots with virtual pheromone. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS 2004) (pp. 3074–3079). Piscataway: IEEE Press.

    Google Scholar 

  • Werger, B., & Matarić, M. (1996). Robotic “food” chains: Externalization of state and program for minimal-agent foraging. In Proceedings of the international conference on simulation of adaptive behavior: from animals to animats (SAB 1996) (pp. 625–634). Cambridge: MIT Press.

    Google Scholar 

  • Wessnitzer, J., & Melhuish, C. (2003). Collective decision-making and behaviour transitions in distributed ad hoc wireless networks of mobile robots: Target-hunting. In LNCS: Vol. 2801. Proceedings of the European conference on artificial life (ECAL 2003) (pp. 893–902). Berlin: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco A. Montes de Oca.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(AVI 16.3 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montes de Oca, M.A., Ferrante, E., Scheidler, A. et al. Majority-rule opinion dynamics with differential latency: a mechanism for self-organized collective decision-making. Swarm Intell 5, 305–327 (2011). https://doi.org/10.1007/s11721-011-0062-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-011-0062-z

Keywords

Navigation