Skip to main content

Advertisement

Log in

Brain Size Growth and Life History in Human Evolution

  • Synthesis Paper
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Increases in endocranial volume (a measure of brain size) play a major role in human evolution. Despite the importance of brain size increase, the developmental bases of human brain size evolution remain poorly characterized. Comparative analyses of endocranial volume size growth illustrate that distinctions between humans and other primates are consequences of differences in rates of brain size growth, with little evidence for differences in growth duration. Evaluation of available juvenile fossils shows that earliest hominins do not differ perceptibly from chimpanzees (Pan). However, rapid and human-like early brain growth apparently characterized Homo erectus at about 1 Ma before present. Neandertals show patterns of brain growth consistent with modern humans during infancy, but reach larger sizes than modern humans as a result of differences in later growth. Growth analyses reveal commonalities in patterns of early brain size growth during the last million years human evolution, despite major increases in adult size. This result implies consistency across hominins in terms of maternal metabolic costs of infancy. Continued size growth past infancy in Neandertals and modern humans, when compared to earlier hominins, may have cognitive implications. Differences between Neandertals and modern humans are implied, but difficult to define with certainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aiello, L. C., Bates, N., & Joffe, T. (2001). In defense of the expensive tissue hypothesis. In D. Falk & K. R. Gibson (Eds.), Evolutionary anatomy of the primate cerebral cortex (pp. 57–78). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Aiello, L. C., & Wheeler, P. (1995). The expensive tissue hypothesis. Current Anthropology, 36, 199–222.

    Article  Google Scholar 

  • Alemseged, Z., Spoor, F., Kimbel, W. H., Bobe, R., Geraads, D., Reed, D., et al. (2006). A juvenile early hominin skeleton from Dikika, Ethiopia. Nature, 443, 296–301.

    Article  PubMed  CAS  Google Scholar 

  • Allman, J., & Hasenstaub, A. (1999). Brains, maturation times, and parenting. Neurobiology of Aging, 20, 447–454.

    Article  PubMed  CAS  Google Scholar 

  • Allman, J. M., McLaughlin, T., & Hakeem, A. (1993). Brain structures and life-span in primate species. Proceedings of the National Academy of Sciences of the United States of America, 90, 3559–3563.

    Article  PubMed  CAS  Google Scholar 

  • Antón, S. C. (1997). Developmental age and taxonomic affinity of the Mojokerto child, Java, Indonesia. American Journal of Physical Anthropology, 102, 497–514.

    Article  PubMed  Google Scholar 

  • Armstrong, E. (1985). Relative brain size in monkeys and prosimians. American Journal of Physical Anthropology, 66, 263–273.

    Article  Google Scholar 

  • Barrickman, N. L., Bastian, M. L., Isler, K., & van Schaik, C. P. (2008). Life history costs and benefits of encephalization: A comparative test using data from long-term studies of primates in the wild. Journal of Human Evolution, 54, 568–590.

    Article  PubMed  Google Scholar 

  • Berge, C., & Goularas, D. (2010). A new reconstruction of STS 14 pelvis (Australopithecus africanus) from computed tomography and three-dimensional modeling techniques. Journal of Human Evolution, 58, 262–272.

    Article  PubMed  Google Scholar 

  • Black, J. E., Greenough, W. T., Anderson, B. J., & Isaacs, K. R. (1987). Environment and the aging brain. Canadian Journal of Psychology, 41, 111–130.

    PubMed  CAS  Google Scholar 

  • Blomquist, G. E. (2009). Trade-off between age of first reproduction and survival in a female primate. Biology Letters, 5, 339–342.

    Article  PubMed  Google Scholar 

  • Bruner, E., & Holloway, R. L. (2010). A bivariate approach to the widening of the frontal lobes in the genus Homo. Journal of Human Evolution, 58, 138–146.

    Article  PubMed  Google Scholar 

  • Cleveland, W. S., & Devlin, S. J. (1988). Locally weighted regression: An approach to regression analysis by local fitting. Journal of the American Statistical Association, 83, 596–610.

    Article  Google Scholar 

  • Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatterplots. Journal of American Statistical Association, 74, 829–836.

    Article  Google Scholar 

  • Coqueugniot, H., Hublin, J.-J., Veillon, F., Houet, F., & Jacob, T. (2004). Early brain growth in Homo erectus and implications for cognitive ability. Nature, 431, 299–302.

    Article  PubMed  CAS  Google Scholar 

  • Count, E. W. (1947). Brain and body weight in man: Their antecedents in growth and evolution. Annals of the New York Academy of Sciences, XLVI, 993–1122.

    Article  Google Scholar 

  • Dart, R. A. (1925). Australopithecus africanus: The man-ape of South Africa. Nature, 115, 195–199.

    Article  Google Scholar 

  • Darwin, C. (1859). On the Origin of the Species by Means of Natural Selection, or, the Preservation of Favoured Races in the Struggle for Life. London: J. Murray.

    Google Scholar 

  • d’Errico, F., Vanhaeren, M., Barton, N., Bouzouggar, A., Mienis, H., Richter, D., et al. (2009). Out of Africa: Modern human origins special feature: Additional evidence on the use of personal ornaments in the middle paleolithic of North Africa. Proceedings of the National Academy of Sciences of the United States of America, 106, 16051–16056.

    Article  PubMed  Google Scholar 

  • DeSilva, J. M., & Lesnik, J. (2008). Brain size at birth throughout human evolution: A new method for estimating neonatal brain size in hominins. Journal of Human Evolution, 55, 1064–1074.

    Article  PubMed  Google Scholar 

  • Dorus, S., Vallender, E. J., Evans, P. D., Anderson, J. R., Gilbert, S. L., Mahowald, M., et al. (2004). Accelerated evolution of nervous system genes in the origin of homo sapiens. Cell, 119, 1027–1040.

    Article  PubMed  CAS  Google Scholar 

  • Dubois, E. (1897). Ueber die Abhängigkeit des Hirngewichtes von derKörpergrösse bei den Säugtieren. Archives of Anthropology, 25, 1–28.

    Google Scholar 

  • Evans, P. D., Vallender, E. J., & Lahn, B. T. (2006). Molecular evolution of the brain size regulator genes CDK5RAP2 and CENPJ. Gene, 375, 75–79.

    Article  PubMed  CAS  Google Scholar 

  • Evans, P. D., Gilbert, S. L., Mekel-Bobrov, N., Vallender, E. J., Anderson, J. R., Vaez-Azizi, L. M., et al. (2005). Microcephalin, a gene regulating brain size, continues to evolve adaptively in humans. Science, 309, 1717–1720.

    Article  PubMed  CAS  Google Scholar 

  • Evans, P. D., Anderson, J. R., Vallender, E. J., Choi, S. S., & Lahn, B. T. (2004a). Reconstructing the evolutionary history of microcephalin, a gene controlling human brain size. Human Molecular Genetics, 13, 1139–1145.

    Article  PubMed  CAS  Google Scholar 

  • Evans, P. D., Anderson, J. R., Vallender, E. J., Gilbert, S. L., Malcom, C. M., Dorus, S., et al. (2004b). Adaptive evolution of ASPM, a major determinant of cerebral cortical size in humans. Human Molecular Genetics, 13, 489–494.

    Article  PubMed  CAS  Google Scholar 

  • Falk, D., Hildebolt, C., Smith, K., Morwood, M. J., Sutikna, T., Jatmiko, et al. (2009). LB1’s virtual endocast, microcephaly, and hominin brain evolution. Journal of Human Evolution, 57, 597–607.

    Article  PubMed  Google Scholar 

  • Falk, D., Hildebolt, C., Smith, K., Morwood, M. J., Sutikna, T., Brown, P., et al. (2005). The brain of LB1, Homo floresiensis. Science, 308, 242–245.

    Article  PubMed  CAS  Google Scholar 

  • Garber, P. A., & Leigh, S. R. (1997). Ontogenetic variation in small-bodied new world primates: Implications for patterns of reproduction and infant care. Folia Primatologica, 68, 1–22.

    Article  CAS  Google Scholar 

  • Giedd, J. N., Snell, J. W., Lange, N., Rajapakse, J. C., Casey, B. J., Kozuch, P. L., et al. (1996). Quantitative magnetic resonance imaging of human brain development: Ages 4–18. Cerebral Cortex, 6, 551–560.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, S. L., Dobyns, W. B., & Lahn, B. T. (2005). Genetic links between brain development and brain evolution. Nature Reviews Genetics, 6, 581–590.

    Article  PubMed  CAS  Google Scholar 

  • Gould, S. J. (1981). The Mismeasure of Man. New York: Alfred R. Knopf.

    Google Scholar 

  • Gould, S. J., & Eldredge, N. (1977). Punctuated equilibria: The tempo and mode of evolution reconsidered. Paleobiology, 3, 115–151.

    Google Scholar 

  • Greenough, W. T., Black, J. E., & Wallace, C. S. (1987). Experience and brain development. Child Development, 58, 539–559.

    Article  PubMed  CAS  Google Scholar 

  • Guatelli-Steinberg, D., Reid, D. J., & Bishop, T. A. (2007). Did the lateral enamel of Neandertal anterior teeth grow differently from that of modern humans? Journal of Human Evolution, 52, 72–84.

    Article  PubMed  Google Scholar 

  • Gunz, P., Mitteroecker, P., Neubauer, S., Weber, G. W., & Bookstein, F. L. (2009). Principles for the virtual reconstruction of hominin crania. Journal of Human Evolution, 57, 48–62.

    Article  PubMed  Google Scholar 

  • Gunz, P., Neubauer, S., Maureille, B., & Hublin, J.-J. (2010). Brain development after birth differs between Neanderthals and modern humans. Current Biology, 20(21), R921–R922.

    Article  PubMed  CAS  Google Scholar 

  • Gunz, P., Neubauer, S., Golovanova, L., Doronichev, V., Maureille, B., & Hublin, J.-J. (2012). A uniquely human pattern of endocranial development. Insights from a new cranial reconstruction of the Neandertal newborn from Mesmaiskaya. Journal of Human Evolution. http://dx.doi.org/10.1016/j.jhevol.2011.11.013.

  • Harvey, P. H., Martin, R. D., & Clutton-Brock, T. H. (1987). Life histories in a comparative perspective. In B. B. Smuts, D. L. Cheney, R. M. Seyfarth, R. W. Wrangham, & T. T. Struhsaker (Eds.), Primate Societies (pp. 181–196). Chicago: University of Chicago Press.

    Google Scholar 

  • Hawkes, K. (2004). Human longevity: The grandmother effect. Nature, 428, 128–129.

    Article  PubMed  CAS  Google Scholar 

  • Hawkes, K. (2003). Grandmothers and the evolution of human longevity. American Journal of Human Biology, 15, 380–400.

    Article  PubMed  Google Scholar 

  • Hawkes, K., O’Connell, J. F., Jones, N. G., Alvarez, H., & Charnov, E. L. (1998). Grandmothering, menopause, and the evolution of human life histories. Proceedings of the National Academy of Sciences of the United States of America, 95, 1336–1339.

    Article  PubMed  CAS  Google Scholar 

  • Herndon, J. G., Tigges, J., Anderson, D. C., Klumpp, S. A, & McClure, H. M. (1999). Brain weight throughout the life span of the chimpanzee. Journal of Comparative Neurology, 409, 567–572.

    Article  PubMed  CAS  Google Scholar 

  • Hill, K., & Hurtado, A. M. (1996). Ache Life History: The Ecology and Demography of a Foraging People. New York: Walter de Gruyter, Inc.

    Google Scholar 

  • Hofman, M. A. (1993). Encephalization and the evolution of longevity in mammals. Journal of Evolutionary Biology, 6, 209–627.

    Article  Google Scholar 

  • Holliday, M. A., Potter, D., Jarrah, A., & Bearg, S. (1967). The relation of metabolic rate to body weight and organ size. Pediatric Research, 1, 185–195.

    Article  PubMed  CAS  Google Scholar 

  • Hublin, J.-J., & Coqueugniot, H. (2006). Absolute or proportional brain size: That is the question. A reply to comments. Journal of Human Evolution, 50, 109–113.

    Article  Google Scholar 

  • Humphrey, L. T. (2010). Weaning behaviour in human evolution. Seminars in Cell & Developmental Biology, 21, 453–461.

    Article  Google Scholar 

  • Isler, K., & van Schaik, C. P. (2009). The expensive brain: A framework for explaining evolutionary changes in brain size. Journal of Human Evolution, 57, 392–400.

    Article  PubMed  Google Scholar 

  • Isler, K., Kirk, C. E., Miller, J. M., Albrecht, G. A., Gelvin, B. R., & Martin, R. D. (2008). Endocranial volumes of primate species: Scaling analyses using a comprehensive and reliable data set. Journal of Human Evolution, 55, 967–978.

    Article  PubMed  Google Scholar 

  • Jolicoeur, P., Baron, G., & Cabana, T. (1988). Cross-sectional growth and decline of human stature and brain weight in 19th-century Germany. Growth, Development, and Aging, 52, 201–206.

    PubMed  CAS  Google Scholar 

  • Kappelman, J., & Nachman, B. A. (2010). Temperate migrations: Climatically-mediated movements north (and south again?). American Journal of Physical Anthropology, 141, 139.

    Google Scholar 

  • Kramer, A. F., Bherer, L., Colcombe, S. J., Dong, W., & Greenough, W. T. (2004). Environmental influences on cognitive and brain plasticity during aging. The Journals of Gerontology: Series A: Biological Sciences and Medical Sciences, 59, M940–M957.

    Article  Google Scholar 

  • Leigh, S. R. (1992a). Cranial capacity evolution in Homo erectus and early Homo sapiens. American Journal of Physical Anthropology, 87, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Leigh, S. R. (1992b). Patterns of variation in the ontogeny of primate body size dimorphism. Journal of Human Evolution, 23(1), 27–50.

    Article  Google Scholar 

  • Leigh, S. R. (1994). Ontogenetic correlates of diet in anthropoid primates. American Journal of Physical Anthropology, 94, 499–522.

    Article  PubMed  CAS  Google Scholar 

  • Leigh, S. R. (2004). Brain growth, life history, and cognition in primate and human evolution. American Journal of Primatology, 62, 139–164.

    Article  PubMed  CAS  Google Scholar 

  • Leigh, S. R. (2006a). Cranial ontogeny of Papio baboons (Papio hamadryas). American Journal of Physical Anthropology, 130, 71–84.

    Article  PubMed  Google Scholar 

  • Leigh, S. R. (2006b). Brain ontogeny and life history in Homo erectus. Journal of Human Evolution, 50, 104–108.

    Article  PubMed  Google Scholar 

  • Leigh, S. R., & Bernstein, R. M. (2006). Ontogeny, life history, and maternal investment in baboons. In L. Swedell & S. R. Leigh (Eds.), Reproduction and fitness in baboons: Behavioral, ecological, and life history perspectives (pp. 225–256). New York: Springer.

    Chapter  Google Scholar 

  • Leonard, W. R., Robertson, M. L., Snodgrass, J. J., & Kuzawa, C. W. (2003). Metabolic correlates of hominid brain evolution. Comparative Biochemistry and Physiology: Part A, Molecular & Integrative Physiology, 136, 5–15.

    Article  Google Scholar 

  • Leonard, W. R., & Robertson, M. L. (1997). Comparative primate energetics and hominid evolution. American Journal of Physical Anthropology, 102, 265–281.

    Article  PubMed  CAS  Google Scholar 

  • Leigh, S. R., & Shea, B. T. (1996). Ontogeny of body size variation in apes. American Journal of Physical Anthropology, 99, 43–65.

    Article  PubMed  CAS  Google Scholar 

  • Marchand, F. (1902). Ueber Das Hirngewicht Des Menschen. Leipzig: B.G. Teubner.

    Google Scholar 

  • Markham, J. A., & Greenough, W. T. (2004). Experience-driven brain plasticity: Beyond the synapse. Neuron Glia Biology, 1, 351–363.

    Article  PubMed  Google Scholar 

  • Martin, R. D. (1981). Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature, 293, 57–60.

    Article  PubMed  CAS  Google Scholar 

  • Martin, R. D. (1983). Human brain evolution in an ecological context (James Arthur Lecture on the Evolution of the Human Brain, no. 52, 1982). New York: American Museum of Natural History.

  • Martin, R. D. (1989). Evolution of the brain in early homininds. Ossa, 14, 49–62.

    Google Scholar 

  • McNulty, K. P., Frost, S. R., & Strait, D. S. (2006). Examining affinities of the Taung child by developmental simulation. Journal of Human Evolution, 51, 274–296.

    Article  PubMed  Google Scholar 

  • Mekel-Bobrov, N., Posthuma, D., Gilbert, S. L., Lind, P., Gosso, M. F., Luciano, M., et al. (2007). The ongoing adaptive evolution of ASPM and microcephalin is not explained by increased intelligence. Human Molecular Genetics, 16, 600–608.

    Article  PubMed  CAS  Google Scholar 

  • Mekel-Bobrov, N., Gilbert, S. L., Evans, P. D., Vallender, E. J., Anderson, J. R., Hudson, R. R., et al. (2005). Ongoing adaptive evolution of ASPM, a brain size determinant in homo sapiens. Science, 309, 1720–1722.

    Article  PubMed  CAS  Google Scholar 

  • Montgomery, S. H., Capellini, I., Barton, R. A., & Mundy, N. I. (2010). Reconstructing the ups and downs of primate brain evolution: Implications for adaptive hypotheses and Homo floresiensis. BMC Biology, 8, 9.

    Article  PubMed  Google Scholar 

  • Neubauer, S., & Hublin, J.-J. (2011). The evolution of human brain development. Evolutionary Biology. doi 10.1007/s11692-011-9156-1.

  • Neubauer, S., Gunz, P., & Hublin, J.-J. (2010). Endocranial shape changes during growth in chimpanzees and humans: A morphometric analysis of unique and shared aspects. Journal of Human Evolution, 59, 555–556.

    Article  PubMed  Google Scholar 

  • Pilbeam, D., & Gould, S. J. (1974). Size and scaling in human evolution. Science, 186, 892–901.

    Article  PubMed  CAS  Google Scholar 

  • Ponce de Leon, M. S., Golovanova, L., Doronichev, V., Romanova, G., Akazawa, T., Kondo, O., et al. (2008). Neanderthal brain size at birth provides insights into the evolution of human life history. Proceedings of the National Academy of Sciences of the United States of America, 105, 13764–13768.

    Article  PubMed  CAS  Google Scholar 

  • Rightmire, G. P. (1981). Patterns in the evolution of Homo erectus. Paleobiology, 7, 241–246.

    Google Scholar 

  • Rightmire, G. P. (2004). Brain size and encephalization in early to mid-pleistocene Homo. American Journal of Physical Anthropology, 124, 109–123.

    Article  PubMed  Google Scholar 

  • Rosenberg, K. R., & Trevathan, W. R. (2001). The evolution of human birth. Scientific American, 285, 72–77.

    Article  PubMed  CAS  Google Scholar 

  • Ruff, C. (2010). Body size and body shape in early hominins—implications of the Gona pelvis. Journal of Human Evolution, 58, 166–178.

    Article  PubMed  Google Scholar 

  • Sacher, G. A. (1959). Relationship of lifespan to brain weight and body weight in mammals. In G. E. W. Wolstenholme & M. O’Connor (Eds.), C.I.B.A. foundation Colloquia on aging volume 5: The lifespan of animals (pp. 115–133). London: Churchill.

    Google Scholar 

  • Sacher, G. A., & Stafffeldt, E. F. (1974). Relation of gestation time to brain weight for placental mammals. American Naturalist, 108, 593–615.

    Article  Google Scholar 

  • Sakai, T., Mikami, A., Matsui, M., Suzuki, J., Hamada, Y., Tanaka, M., et al. (2011). Differential prefrontal white matter development in chimpanzees and humans. Current Biology, 21, 1397–1402.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, J. H., Holloway, R. L., Broadfield, D. C., Tattersall, I., & Yuan, M. S. (2004). The Human Fossil Record Volume 3, Brain Endocasts - the Paleoneurological Evidence. Hoboken, NJ: John Wiley and Sons.

  • Shattuck, M. R., & Williams, S. A. (2010). Arboreality has allowed for the evolution of increased longevity in mammals. Proceedings of the National Academy of Sciences of the United States of America, 107, 4635–4639.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, S. W., Quade, J., Levin, N. E., Butler, R., Dupont-Nivet, G., Everett, M., et al. (2008). A female Homo erectus pelvis from Gona, Ethiopia. Science, 322, 1089–1092.

    Article  PubMed  CAS  Google Scholar 

  • Smith, T. M., Toussaint, M., Reid, D. J., Olejniczak, A. J., & Hublin, J. J. (2007). Rapid dental development in a middle paleolithic Belgian Neanderthal. Proceedings of the National Academy of Sciences of the United States of America, 104, 20220–20225.

    Article  PubMed  CAS  Google Scholar 

  • Swisher, C. C., 3rd, Rink, W. J., Antón, S. C., Schwarcz, H. P., Curtis, G. H., Suprijo, A., et al. (1996). Latest Homoerectus of Java: Potential contemporaneity with Homo sapiens in Southeast Asia. Science, 274, 1870–1874.

    Article  PubMed  CAS  Google Scholar 

  • Tobias, P. V. (1970). Brain-size, grey matter and race–fact or fiction? American Journal of Physical Anthropology, 32, 3–25.

    Article  PubMed  CAS  Google Scholar 

  • Trevathan, W. R. (1996). The evolution of bipedalism and assisted birth. Medical Anthropology Quarterly, 10, 287–290.

    Article  PubMed  CAS  Google Scholar 

  • Vallender, E. J., & Lahn, B. T. (2006). A primate-specific acceleration in the evolution of the caspase-dependent apoptosis pathway. Human Molecular Genetics, 15, 3034–3040.

    Article  PubMed  CAS  Google Scholar 

  • Vrba, E. S. (1998). Multiphasic growth models and the prolonged growth exemplified by human brain evolution. Journal of Theoretical Biology, 190, 227–239.

    Article  PubMed  CAS  Google Scholar 

  • Walker, A., & Ruff, C. B. (1993). Reconstruction of the pelvis. In A. Walker & R. Leakey (Eds.), The Nariokotome Homo erectus Skeleton (pp. 221–233). Cambridge: Harvard Univ. Press.

    Google Scholar 

  • Weaver, T. D., & Hublin, J. J. (2009). Neandertal birth canal shape and the evolution of human childbirth. Proceedings of the National Academy of Sciences of the United States of America, 106, 8151–8156.

    Article  PubMed  CAS  Google Scholar 

  • Weidenreich, F. (1941). The brain and its rôle in the phylogenetic transformation of the human skull. Transactions of the American Philosophical Society, 31, 320–442.

    Article  Google Scholar 

  • White, T. D., Asfaw, B., DeGusta, D., Gilbert, H., Richards, G. D., Suwa, G., et al. (2003). Pleistocene Homo sapiens from Middle Awash, Ethiopia. Nature, 423, 724–747.

    Article  Google Scholar 

  • Williams, G. C. (1957). Pleiotropy, natural selection, and the evolution of senescence. Evolution, 11, 398–4111.

    Article  Google Scholar 

  • Wolpoff, M. H. (1986). Stasis in the interpretation of evolution in Homo erectus: A reply to Rightmire. Paleobiology, 12, 325–328.

    Google Scholar 

  • Wood, J., Milner, G. R., Harpending, H. C., & Weiss, K. M. (1992). The osteological paradox: Problems of inferring prehistoric health from skeletal samples. Current Anthropology, 33, 343–370.

    Article  Google Scholar 

Download references

Acknowledgments

I thank Drs. Phillipp Mitteroecker and Phillipp Gunz for organizing the stimulating workshop, “Human Evo-Devo: The Role of Development in Human Evolution” at the Konrad Lorenz Institute for Evolution and Cognition Research (Altenberg, Austria). Other conference participants provided valuable advice and feedback on the research. Two anonymous reviewers provided valuable insights with skill, patience, and professionalism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven R. Leigh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leigh, S.R. Brain Size Growth and Life History in Human Evolution. Evol Biol 39, 587–599 (2012). https://doi.org/10.1007/s11692-012-9168-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-012-9168-5

Keywords

Navigation