Skip to main content
Log in

Repeated mild traumatic brain injuries is not associated with volumetric differences in former high school football players

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

We investigated potential brain volumetric differences in a sample of former high school football players many years after these injuries. Forty community-dwelling males ages 40–65 who played high school football, but not college or professional sports, were recruited. The experimental group (n = 20) endorsed experiencing two or more mTBIs on an empirically validated mTBI assessment tool (median = 3, range = 2–15). The control group (n = 20) denied ever experiencing an mTBI. Participants completed a self-report index of current mTBI symptomatology and underwent high-resolution T1-weighted MRI scanning, which were analyzed using the Freesurfer software package. A priori regions of interest (ROIs) included total intracranial volume (ICV), total gray matter, total white matter, bilateral anterior cingulate cortex, bilateral hippocampi, and lateral ventricles. ROIs were corrected for head size using a normalization method that took ICV into account. Despite an adequate sample size and being matched on age, education, estimated premorbid IQ, current concussive symptomatology, there were no statistically significant volumetric group differences across all of the ROIs. These data suggest that multiple mTBIs from high school football may not be associated with measurable brain atrophy later in life. Accounting for the severity of injury and chronicity of sport exposure may be especially important when measuring long-term neuroanatomical differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • American Congress of Rehabilitation Medicine. (1993). Definition of mild traumatic brain injury. Journal of Head Trauma Rehabilitation, 8, 86–87.

    Article  Google Scholar 

  • Arciniegas, D., Olincy, A., Topkoff, J., McRae, K., Cawthra, E., Filley, C., et al. (2000). Impaired auditory gating and P50 Nonsuppression following traumatic brain injury. The Journal of Neuropsychiatry and Clinical Neurosciences, 12, 77–85.

    Article  PubMed  CAS  Google Scholar 

  • Bazarian, J. J., Zhong, J., Blyth, B., Zhu, T., Kavcic, V., & Peterson, D. (2007). DTI detects clinically important axonal damage after mild TBI: A pilot study. Journal of Neurotrauma, 24, 1447–1459. doi:10.1089/neu.2007.0241.

    Article  PubMed  Google Scholar 

  • Bigler, E. D. (2004). Neuropsychological results and neuropathological findings at autopsy in a case of mild traumatic brain injury. Journal of the International Neuropsychological Society, 10, 794–800. doi:10.1017/S1355617704105146.

    Article  PubMed  Google Scholar 

  • Blennow, K., Hardy, J., Zetterberg, H. (2012). The neuropathology and neurobiology of traumatic brain injury. Neuron, 6,(76), 886–899.

  • Blumbergs, P. C., Scott, G., Manavis, J., Wainwright, H., Simpson, D. A., & McLean, A. J. (1994). Staining of amyloid precursor protein to study axonal damage in mild head injury. Lancet, 344, 1055–1056. doi:10.1016/S0140-6736(94)91712-4.

    Article  PubMed  CAS  Google Scholar 

  • Broglio, S. P., Macciocchi, S. N., & Ferrara, M. S. (2007). Neurocognitive performance of concussed athletes when symptom free. Journal of Athletic Training, 42, 504–508.

    PubMed  PubMed Central  Google Scholar 

  • Broglio, S. P., Eckner, J. T., Paulson, H. L., & Kutcher, J. S. (2012). Cognitive decline and aging: The role of concussive and subconcussive impacts. Exercise and Sport Sciences Reviews, 40, 138–144. doi:10.1097/JES.0b013e3182524273.

    Article  PubMed  PubMed Central  Google Scholar 

  • Buckner, R. L., Head, D., Parker, J., Fotenos, A. F., Marcus, D., Morris, J. C., & Synder, A. Z. (2004). A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: Reliability and validation against manual of total intracranial volume. NeuroImage, 23, 724–738. doi:10.1016/j.neuroimage.2004.06.018.

    Article  PubMed  Google Scholar 

  • Canu, E., McLaren, D. G., Fitzgerald, M. E., Bendlin, B. B., Zoccatelli, G., Alessandrini, F., et al. (2010). Microstructural diffusion changes are independent of macrostructural volume loss in moderate to severe Alzheimer’s disease. Journal of Alzheimer’s Disease, 19, 963–976. doi:10.3233/JAD-2010-1295.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cassidy, J. D., Carroll, L. J., Peloso, P. M., Borg, J., von Holst, H., Holm, L., Kraus, J., Coronado, VG.; WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. (2004). Incidence, risk factors and prevention of mild traumatic brain injury: results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. Journal of Rehabilitation Medicine, 43(suppl), 28–60.

  • CDC (2010). Injury, prevention, & control: Traumatic brain injury. Center for Disease Control and Prevention. Retrieved from http://www.cdc.gov/traumaticbraininjury/statistics.html.

  • De Beaumont, L., Théoret, H., Mongeon, D., Messier, J., Leclerc, S., Tremblay, S., et al. (2009). Brain function decline in healthy retired athletes who sustained their last sports concussion in early adulthood. Brain, 132, 695–708. doi:10.1093/brain/awn347.

    Article  PubMed  Google Scholar 

  • Du, A.-T., Schuff, N., Chao, L. L., Kornak, J., Jagust, W. J., Kramer, J. H., et al. (2006). Age effects on atrophy rates of entorhinal cortex and hippocampus. Neurobiology of Aging, 27, 733–740. doi:10.1016/j.neurobiolaging.2005.03.021.

    Article  PubMed  Google Scholar 

  • Erickson, K. I., Prakash, R. S., Voss, M. W., Chaddock, L., Hu, L., Morris, K. S., et al. (2009). Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus, 19, 1030–1039. doi:10.1002/hipo.20547.

    Article  PubMed  PubMed Central  Google Scholar 

  • Faul, M. D., Xu, L., Wald, M. M., & Coronado, V. G., (2010). Traumatic brain injury in the United States: Emergency department visits, hospitalizations, and deaths 2002–2006. Atlanta: Centers for Disease Control and Prevention, National Center for Injury Prevention and Control, pp. 2–70.

  • Fischl, B., Salat, D., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., et al. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341–355. doi:10.1016/S0896-6273(02)00569-X.

    Article  PubMed  CAS  Google Scholar 

  • Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Ségonne, F., Salat, D. H., et al. (2004a). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14(1), 11–22. doi:10.1093/cercor/bhg087.

    Article  PubMed  Google Scholar 

  • Fischl, B., Salat, D. H., van der Kouwe, A. J., Makris, N., Ségonne, F., Quinn, B. T., & Dale, A. (2004b). Sequence-independent segmentation of magnetic resonance images. NeuroImage, 23, S69–S84. doi:10.1016/j.neuroimage.2004.07.016.

    Article  PubMed  Google Scholar 

  • Gale, S. D., Johnson, S. C., Bigler, E. D., & Blatter, D. D. (1995). Trauma-induced degenerative changes in brain injury: A morphometric analysis of three patients with preinjury and postinjury MR scans. Journal of Neurotrauma, 12(2), 151–158. doi:10.1089/neu.1995.12.151.

    Article  PubMed  CAS  Google Scholar 

  • Gioia, G. A., & Collins, M. W. (2006) Acute concussion evaluation (ace): physician/clinician version. Available at: http://ww.cdc.gov/ncipc/tbi/PhysiciansToolKit.htm.

  • Gioia, G. A., Collins, M. W., & Isquith, P. K. (2008). Improving identification and diagnosis of mild traumatic brain injury with evidence: Psychometric support for the acute concussion evaluation. The Journal of Head Trauma Rehabilitation, 23, 230–242. doi:10.1097/01.HTR.0000327255.38881.ca.

    Article  PubMed  Google Scholar 

  • Hall, R. C., Hall, R. C., & Chapman, M. J. (2005). Definition, diagnosis, and forensic implications of postconcussional syndrome. Psychosomatics, 46(3), 195–202. doi:10.1176/appi.psy.46.3.195.

    Article  PubMed  Google Scholar 

  • Hart Jr., J., Kraut, M. A., Womack, K. B., Strain, J., Didehbani, N., Bartz, E., et al. (2013). Neuroimaging of cognitive dysfunction and depression in aging retired National Football League players: A cross-sectional study. JAMA Neurology, 70, 326–335. doi:10.1001/2013.jamaneurol.340.

    Article  PubMed  PubMed Central  Google Scholar 

  • Head, D., Rodrigue, K. M., Kennedy, K. M., & Raz, N. (2008). Neuroanatomical and cognitive mediators of age-related differences in episodic memory. Neuropsychology, 22(4), 491–507. doi:10.1037/0894-4105.22.4.491.

    Article  PubMed  PubMed Central  Google Scholar 

  • Henry, L. C., Tremblay, S., & De Beaumont, L. (2016). Long-term effects of sports Concussions: Bridging the Neurocognitive Repercussions of the Injury with the Newest Neuroimaging Data. Neuroscientist. doi:10.1177/1073858416651034

  • Hofman, P. A., Stapert, S. Z., van Kroonenburgh, M. J., Jolles, J., de Kruijk, J., & Wilmink, J. T. (2001). MR imaging, single-photon emission CT, and neurocognitive performance after mild traumatic brain injury. American. Journal of Neuroradiology, 22(3), 441–449.

    PubMed  CAS  Google Scholar 

  • Hughes, D. G., Jackson, A., Mason, D. L., Berry, E., Hollis, S., & Yates, D. W. (2004). Abnormalities on magnetic resonance imaging seen acutely following mild traumatic brain injury: Correlation with neuropsychological tests and delayed recovery. Neuroradiology, 46(7), 550–558. doi:10.1007/s00234-004-1227-x.

    Article  PubMed  Google Scholar 

  • Iverson, G. L., Lovell, M. R., Smith, S., & Franzen, M. D. (2000). Prevalence of abnormal CT- scans following mild head injury. Brain Injury, 14(12), 1057–1061. doi:10.1080/02699050050203559.

    Article  PubMed  CAS  Google Scholar 

  • Jarrett, M., Tam, R., Hernández-Torres, E., Martin, N., Perera, W., Zhao, Y., et al. (2016). A prospective pilot investigation of brain volume, white matter Hyperintensities, and hemorrhagic lesions after mild traumatic brain injury. Frontiers in Neurology, 7, 11. doi:10.3389/fneur.2016.00011.

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnston, K. M., Ptito, A., et al. (2001). New frontiers in diagnostic imaging in concussive head injury. Clinical Journal of Sport Medicine, 11(3), 166–175. doi:10.1097/00042752-200107000-00007.

    Article  PubMed  CAS  Google Scholar 

  • Kendler, K. S., Jacobson, K., Myers, J. M., & Eaves, L. J. (2008). A genetically informative developmental study of the relationship between conduct disorder and peer deviance in males. Psychological Medicine, 38, 1001–1011. doi:10.1017/S0033291707001821.

    Article  PubMed  CAS  Google Scholar 

  • Kramer, J. H., Mungas, D., Reed, B. R., Wetzel, M. E., Burnett, M. M., Miller, B. L., et al. (2007). Longitudinal MRI and cognitive change in healthy elderly. Neuropsychology, 21(4), 412–418. doi:10.1037/0894-4105.21.4.412.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ling, J. M., Kilmaj, S., Toulouse, T., & Mayer, A. R. (2013). A prospective study of gray matter abnormalities in mild traumatic brain injury. Neurology, 81, 2121–2127. doi:10.1212/01.wnl.0000437302.36064.b1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • List, J., Ott, S., Bukowski, M., Lindenberg, R., & Flöel, A. (2015). Cognitive function and brain structure after recurrent mild traumatic brain injuries in young-to-middle-aged adults. Frontiers in Human Neuroscience, 9, 228. doi:10.3389/fnhum.2015.00228.

    Article  PubMed  PubMed Central  Google Scholar 

  • MacKenzie, J. D., Siddiqi, F., Babb, J. S., Bagley, L. J., Mannon, L. J., Sinson, G. P., & Grossman, R. I. (2002). Brain atrophy in mild or moderate traumatic brain injury: A longitudinal quantitative analysis. American Journal of Neuroradiology, 23(9), 1509–1515.

    PubMed  Google Scholar 

  • McCrory, P., Meeuwisse, W., Johnston, K., Dvorak, J., Aubry, M., Molloy, M., & Cantu, R. (2009). Consensus statement on concussion in sport - the 3rd international conference on concussion in sport held in Zurich. PM R, 1, 406–420. doi:10.1016/j.pmrj.2009.03.010.

    Article  PubMed  Google Scholar 

  • Moffitt, T. E., Harrington, H., Caspi, A., Kim-Cohen, J., Goldberg, D., Gregory, A. M., & Poulton, R. (2007). Depression and generalized anxiety disorder: Cumulative and sequential comorbidity in a birth cohort followed prospectively to age 32 years. Archives of General Psychiatry, 64, 651–660. doi:10.1001/archpsyc.64.6.651.

    Article  PubMed  Google Scholar 

  • Monti, J. M., Voss, M. W., Pence, A., McAuley, E., Kramer, A. F., & Cohen, N. J. (2013). History of mild traumatic brain injury is associated with deficits in relational memory, reduced hippocampal volume, and less neural activity later in life. Frontiers in Aging Neuroscience, 5, 41. doi:10.3389/fnagi.2013.00041.

    Article  PubMed  PubMed Central  Google Scholar 

  • Morey, R. A., Petty, C. M., Xu, Y., Hayes, J. P., Wagner, H. R., Lewis, D. V., et al. (2009). A comparison of automated seg- mentation and manual tracing for quantifying hippocampal and amygdala volumes. NeuroImage, 45, 855–866. doi:10.1016/j.neuroimage.2008.12.033.

    Article  PubMed  Google Scholar 

  • Niogi, S. N., & Mukherjee, P. (2010). Diffusion tensor imaging of mild TBI. The Journal of Head Trauma Rehabilitation, 25(4), 241–255. doi:10.1097/HTR.0b013e3181e52c2a.

    Article  PubMed  Google Scholar 

  • Piland, S. G., Ferrara, M. S., Macciocchi, S. N., Broglio, S. P., & Gould, T. E. (2010). Investigation of baseline self-report concussion symptom scores. Journal of Athletic Training, 45(3), 273–278. doi:10.4085/1062-6050-45.3.273.

    Article  PubMed  PubMed Central  Google Scholar 

  • Randolph, C., Tierney, M., Mohr, E., & Chase, T. (1998). The Repeatable Battery for the assessment of neuropsychological status (RBANS): Preliminary clinical validity. Journal of Clinical and Experimental Neuropsychology, 20, 310–319. doi:10.1076/jcen.20.3.310.823.

    Article  PubMed  CAS  Google Scholar 

  • Ross, D. E., Ochs, A. L., Seabaugh, J. M., DeMark, M. F., Shrader, C. R., Marwitz, J. H., & Havranek, M. D. (2012). Progressive brain atrophy in patients with chronic neuropsychiatric symptoms after mild traumatic brain injury: A preliminary study. Brain Injury, 26, 1500–1509. doi:10.3109/02699052.2012.694570.

    Article  PubMed  Google Scholar 

  • Ross, D. E., Ochs, A. L., DeSmit, M. E., & Seabaugh, J. M. (2014). Back to the future estimating pre-injury brain volume in patients with traumatic brain injury. NeuroImage. doi:10.1016/j.neuroimage.2014.07.043.

    Article  PubMed  Google Scholar 

  • Sanfilipo, M. P., Benedict, R. H., Zivadinov, R., & Bakshi, R. (2004). Correction for intracranial volume in analysis of whole brain atrophy in multiple sclerosis: The proportion vs. residual method. NeuroImage, 22, 1732–1743.

    Article  PubMed  Google Scholar 

  • Singh, R., Meier, T. B., Kuplicki, R., Savitz, J., Mukai, I., Cavanagh, L., Allen, T., Teague, T. K., et al. (2014). Relationship of collegiate football experience and concussion with hippocampal volume and cognitive outcomes. JAMA, 311, 1883–1888. doi:10.1001/jama.2014.3313.

    Article  PubMed  CAS  Google Scholar 

  • Stein, M. B., & McAllister, T. W. (2009). Exploring the convergence of posttraumatic stress disorder and mild TBI. The American Journal of Psychiatry, 166(7), 768–776. doi:10.1176/appi.ajp.2009.08101604.

    Article  PubMed  Google Scholar 

  • Tate, D. F., York, G. E., Reid, M. W., Cooper, D. B., Jones, L., Robin, D. A., Kennedy, J. E., & Lewis, J. (2014). Preliminary findings of cortical thickness abnormalities in blast injured service members and their relationship to clinical findings. Brain, Imaging, and Behavior, 8, 102–109. doi:10.1007/s11682-013-9257-9.

    Article  CAS  Google Scholar 

  • Terribilli, D., Schaufelberger, M. S., Duran, F. L. S., Zanetti, M. V., Curiati, P. K., Menezes, P. R., et al. (2011). Age-related gray matter volume changes in the brain during non-elderly adulthood. Neurobiology of Aging, 32(2–6), 354–368. doi:10.1016/j.neurobiolaging.2009.02.008.

    Article  PubMed  PubMed Central  Google Scholar 

  • Terry, D. P., & Miller, L. S. (2016). Microstructural white matter differences in former high school football players with a history of multiple concussions. In Paper presented at the National Academy of Neuropsychology annual conference, October 2016. Seattle, WA.

  • Terry, D. P., Adams, T. E., Ferrara, M. S., & Miller, L. S. (2015). FMRI hypoactivation during verbal learning and memory in former high school football players with multiple concussions. Archives of Clinical Neuropsychology, 30, 341–355. doi:10.1093/arclin/acv020.

    Article  PubMed  Google Scholar 

  • Tremblay, S., De Beaumont, L., Henry, L. C., Boulanger, Y., Evans, A. C., Bourgouin, P., et al. (2013). Sports concussions and aging: A neuroimaging investigation. Cerebral Cortex, 23, 1159–1166. doi:10.1093/cercor/bhs102.

    Article  PubMed  Google Scholar 

  • Tremblay, S., Henry, L. C., Bedetti, C., Larson-Dupuis, C., Gagnon, J. F., Evans, A. C., et al. (2014). Diffuse white matter tract abnormalities in clinically normal ageing retired athletes with a history of sports-related concussions. Brain, 137, 2997–3011. doi:10.1093/brain/awu236.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wierenga, C. E., & Bondi, M. W. (2007). Use of functional magnetic resonance imaging in the early identification of Alzheimer’s disease. Neuropsychology Review, 17(2), 127–143. doi:10.1007/s11065-007-9025-y.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilde, E. A., Bigler, E. D., Huff, T., Wang, H., Black, G. M., Christensen, Z. P., et al. (2016). Quantitative structural neuroimaging of mild traumatic brain injury in the chronic effects of Neurotrauma consortium (CENC): Comparison of volumetric data within and across scanners. Brain Injury, 30, 1442–1451. doi:10.1080/02699052.2016.1219063.

    Article  PubMed  Google Scholar 

  • Zhou, Y., Kierans, A., Kenul, D., Ge, Y., Rath, J., Reaume, J., Grossman, R. I., & Lui, Y. W. (2013). Mild traumatic brain injury: Longitudinal regional brain volume changes. Radiology, 267, 880–890. doi:10.1148/radiol.13122542.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was made possible by the charitable contributions of the John & Mary Franklin Foundation and the BioImaging Research Center at the University of Georgia. There are no other funding agencies or conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Stephen Miller.

Ethics declarations

Funding

This study was funded by partial support to D.P. Terry by the John and Mary Franklin Foundation and the University of Georgia BioImaging Research Center.

Conflict of interest

D.P. Terry and L.S. Miller declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the University of Georgia Institutional Review Board and with the 1964 Helsinki declaration and its later amendments.

Additional information

Submitted as an Original Report to the Brain Imaging and Behavior

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terry, D.P., Miller, L.S. Repeated mild traumatic brain injuries is not associated with volumetric differences in former high school football players. Brain Imaging and Behavior 12, 631–639 (2018). https://doi.org/10.1007/s11682-017-9719-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-017-9719-6

Keywords

Navigation