Skip to main content

Advertisement

Log in

A functional MRI study of multimodal selective attention following mild traumatic brain injury

  • mTBI SPECIAL ISSUE
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Previous work suggests that the ability to selectively attend to and resolve conflicting information may be the most enduring cognitive deficit following mild traumatic brain injury (mTBI). The current study used fMRI to evaluate potential differences in hemodynamic activation in 22 mTBI patients and 22 carefully matched healthy controls (HC) during a multimodal selective attention task (numeric Stroop). Behavioral data indicated faster reaction times for congruent versus incongruent trials and for stimuli presented at 0.66 compared to 0.33 Hz across both groups, with minimal differences in behavioral performance across the groups. Similarly, there were no group-wise differences in functional activation within lateral and medial prefrontal cortex during the execution of cognitive control (incongruent versus congruent trials). In contrast, within-group comparisons indicated robust patterns of attention-related modulations (ARM) within the bilateral dorsolateral prefrontal cortex and bilateral visual streams for HC but not mTBI patients. In addition, mTBI patients failed to exhibit task-induced deactivation within the default-mode network (DMN) under conditions of higher attentional load. In summary, in spite of near normal behavioral performance, current results suggest within-group abnormalities during both the top-down allocation of visual attention and in regulating the DMN during the semi-acute stage of mTBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baier, B., Kleinschmidt, A., & Muller, N. G. (2006). Cross-modal processing in early visual and auditory cortices depends on expected statistical relationship of multisensory information. Journal of Neuroscience, 26, 12260–12265.

    Article  PubMed  CAS  Google Scholar 

  • Banich, M. T., Milham, M. P., Atchley, R. A., Cohen, N. J., Webb, A., Wszalek, T., et al. (2000). Prefrontal regions play a predominant role in imposing an attentional 'set': evidence from fMRI. Brain Research. Cognitive Brain Research, 10, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Barkhoudarian, G., Hovda, D. A., & Giza, C. C. (2011). The molecular pathophysiology of concussive brain injury. Clinics in Sports Medicine, 30, 33–48.

    Article  PubMed  Google Scholar 

  • Belanger, H. G., & Vanderploeg, R. D. (2005). The neuropsychological impact of sports-related concussion: a meta-analysis. Journal of International Neuropsychological Society, 11, 345–357.

    Article  Google Scholar 

  • Belanger, H. G., Curtiss, G., Demery, J. A., Lebowitz, B. K., & Vanderploeg, R. D. (2005). Factors moderating neuropsychological outcomes following mild traumatic brain injury: a meta-analysis. Journal of International Neuropsychological Society, 11, 215–227.

    Article  Google Scholar 

  • Belanger, H. G., Vanderploeg, R. D., Curtiss, G., & Warden, D. L. (2007). Recent neuroimaging techniques in mild traumatic brain injury. The Journal of Neuropsychiatry and Clinical Neurosciences, 19, 5–20.

    Article  PubMed  Google Scholar 

  • Bigler, E. D. (2001). Quantitative magnetic resonance imaging in traumatic brain injury. The Journal of Head Trauma Rehabilitation, 16, 117–134.

    Article  PubMed  CAS  Google Scholar 

  • Bigler, E. D. (2004). Neuropsychological results and neuropathological findings at autopsy in a case of mild traumatic brain injury. Journal of International Neuropsychological Society, 10, 794–806.

    Google Scholar 

  • Bigler, E. D. (2008). Neuropsychology and clinical neuroscience of persistent post-concussive syndrome. Journal of International Neuropsychological Society, 14, 1–22.

    Article  Google Scholar 

  • Binder, J. R., Frost, J. A., Hammeke, T. A., Bellgowan, P. S., Rao, S. M., & Cox, R. W. (1999). Conceptual processing during the conscious resting state. A functional MRI study. Journal of Cognitive Neuroscience, 11, 80–95.

    Article  PubMed  CAS  Google Scholar 

  • Braver, T. S., Reynolds, J. R., & Donaldson, D. I. (2003). Neural mechanisms of transient and sustained cognitive control during task switching. Neuron, 39, 713–726.

    Article  PubMed  CAS  Google Scholar 

  • Broyd, S. J., Demanuele, C., Debener, S., Helps, S. K., James, C. J., & Sonuga-Barke, E. J. (2009). Default-mode brain dysfunction in mental disorders: a systematic review. Neuroscience and Biobehavioral Reviews, 33, 279–296.

    Article  PubMed  Google Scholar 

  • Bryant, R. A., & Harvey, A. G. (1998). Relationship between acute stress disorder and posttraumatic stress disorder following mild traumatic brain injury. The American Journal of Psychiatry, 155, 625–629.

    PubMed  CAS  Google Scholar 

  • Carter, C. S., & van Veen, V. (2007). Anterior cingulate cortex and conflict detection: an update of theory and data. Cognitive, Affective, & Behavioral Neuroscience, 7, 367–379.

    Article  Google Scholar 

  • Cox, R. W. (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29, 162–173.

    Article  PubMed  CAS  Google Scholar 

  • Degerman, A., Rinne, T., Pekkola, J., Autti, T., Jaaskelainen, I. P., Sams, M., et al. (2007). Human brain activity associated with audiovisual perception and attention. NeuroImage, 34, 1683–1691.

    Article  PubMed  Google Scholar 

  • Dhamala, M., Assisi, C. G., Jirsa, V. K., Steinberg, F. L., & Kelso, J. A. (2007). Multisensory integration for timing engages different brain networks. NeuroImage, 34, 764–773.

    Article  PubMed  Google Scholar 

  • Eichele, T., Debener, S., Calhoun, V. D., Specht, K., Engel, A. K., Hugdahl, K., et al. (2008). Prediction of human errors by maladaptive changes in event-related brain networks. Proceedings of the National Academy of Sciences of the United States of America, 105, 6173–6178.

    Article  PubMed  CAS  Google Scholar 

  • Eimer, M., van Velzen, J., & Driver, J. (2002). Cross-modal interactions between audition, touch, and vision in endogenous spatial attention: ERP evidence on preparatory states and sensory modulations. Journal of Cognitive Neuroscience, 14, 254–271.

    Article  PubMed  Google Scholar 

  • Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews. Neuroscience, 8, 700–711.

    Article  PubMed  CAS  Google Scholar 

  • Giza, C. C., & Hovda, D. A. (2001). The neurometabolic cascade of concussion. Journal of Athletic Training, 36, 228–235.

    PubMed  Google Scholar 

  • Greicius, M. D., & Menon, V. (2004). Default-mode activity during a passive sensory task: uncoupled from deactivation but impacting activation. Journal of Cognitive Neuroscience, 16, 1484–1492

    Google Scholar 

  • Halterman, C. I., Langan, J., Drew, A., Rodriguez, E., Osternig, L. R., Chou, L. S., et al. (2006). Tracking the recovery of visuospatial attention deficits in mild traumatic brain injury. Brain, 129, 747–753.

    Article  PubMed  Google Scholar 

  • Hester, R., Fassbender, C., & Garavan, H. (2004). Individual differences in error processing: a review and reanalysis of three event-related fMRI studies using the GO/NOGO task. Cerebral Cortex, 14, 986–994.

    Article  PubMed  Google Scholar 

  • Hofman, P. A., Stapert, S. Z., van Kroonenburgh, M. J., Jolles, J., de Kruijk, J., & Wilmink, J. T. (2001). MR imaging, single-photon emission CT, and neurocognitive performance after mild traumatic brain injury. AJNR. American Journal of Neuroradiology, 22, 441–449.

    PubMed  CAS  Google Scholar 

  • Hutchison, M., Comper, P., Mainwaring, L., & Richards, D. (2011). The influence of musculoskeletal injury on cognition: implications for concussion research. The American Journal of Sports Medicine, 39, 2331–2337.

    Article  PubMed  Google Scholar 

  • Inglese, M., Makani, S., Johnson, G., Cohen, B. A., Silver, J. A., Gonen, O., et al. (2005). Diffuse axonal injury in mild traumatic brain injury: a diffusion tensor imaging study. Journal of Neurosurgery, 103, 298–303.

    Article  PubMed  Google Scholar 

  • Iverson, G. L. (2005). Outcome from mild traumatic brain injury. Current Opinion in Psychiatry, 18, 301–317.

    Article  PubMed  Google Scholar 

  • Iverson, G. L. (2006). Complicated vs uncomplicated mild traumatic brain injury: acute neuropsychological outcome. Brain Injury, 20, 1335–1344.

    Article  PubMed  Google Scholar 

  • Johnson, J. A., & Zatorre, R. J. (2005). Attention to simultaneous unrelated auditory and visual events: behavioral and neural correlates. Cerebral Cortex, 15, 1609–1620.

    Article  PubMed  Google Scholar 

  • Johnson, B., Zhang, K., Gay, M., Horovitz, S., Hallett, M., Sebastianelli, W., et al. (2012). Alteration of brain default network in subacute phase of injury in concussed individuals: resting-state fMRI study. NeuroImage, 59, 511–518.

    Article  PubMed  Google Scholar 

  • Kelley, W. M., Macrae, C. N., Wyland, C. L., Caglar, S., Inati, S., & Heatherton, T. F. (2002). Finding the self? An event-related fMRI study. Journal of Cognitive Neuroscience, 14, 785–794.

    Article  PubMed  CAS  Google Scholar 

  • Kerns, J. G., Cohen, J. D., MacDonald, A. W., III, Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303, 1023–1026.

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y. H., Yoo, W. K., Ko, M. H., Park, C. H., Sung, T. K., & Na, D. L. (2009). Plasticity of the attentional network after brain injury and cognitive rehabilitation. Neurorehabilitation and Neural Repair, 23, 468–477.

    Article  PubMed  Google Scholar 

  • Lange, R. T., Iverson, G. L., & Franzen, M. D. (2009). Neuropsychological functioning following complicated vs. uncomplicated mild traumatic brain injury. Brain Injury, 23, 83–91.

    Article  PubMed  Google Scholar 

  • Liu, T., Slotnick, S. D., Serences, J. T., & Yantis, S. (2003). Cortical mechanisms of feature-based attentional control. Cerebral Cortex, 13, 1334–1343.

    Article  PubMed  Google Scholar 

  • Lovell, M. R., Pardini, J. E., Welling, J., Collins, M. W., Bakal, J., Lazar, N., et al. (2007). Functional brain abnormalities are related to clinical recovery and time to return-to-play in athletes. Neurosurgery, 61, 352–359.

    Article  PubMed  Google Scholar 

  • McKiernan, K. A., Kaufman, J. N., Kucera-Thompson, J., & Binder, J. R. (2003). A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. Journal of Cognitive Neuroscience, 15, 394–408.

    Google Scholar 

  • Mannell, M. V., Franco, A. R., Calhoun, V. D., Canive, J. M., Thoma, R. J., & Mayer, A. R. (2010). Resting state and task-induced deactivation: a methodological comparison in patients with schizophrenia and healthy controls. Human Brain Mapping, 31, 424–437.

    PubMed  Google Scholar 

  • Mason, M. F., Norton, M. I., Van Horn, J. D., Wegner, D. M., Grafton, S. T., & Macrae, C. N. (2007). Wandering minds: the default network and stimulus-independent thought. Science, 315, 393–395.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, A. R., Franco, A. R., Canive, J., & Harrington, D. L. (2009). The effects of stimulus modality and frequency of stimulus presentation on cross-modal distraction. Cerebral Cortex, 19, 993–1007.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, A. R., Ling, J., Mannell, M. V., Gasparovic, C., Phillips, J. P., Doezema, D., et al. (2010). A prospective diffusion tensor imaging study in mild traumatic brain injury. Neurology, 74, 643–650.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, A. R., Mannell, M. V., Ling, J., Gasparovic, C., & Yeo, R. A. (2011). Functional connectivity in mild traumatic brain injury. Human Brain Mapping, 32, 1825–1835.

    Article  PubMed  Google Scholar 

  • Mayer, A. R., Teshiba, T. M., Franco, A. R., Ling, J., Shane, M. S., Stephen, J. M., et al. (2011b). Modeling conflict and error in the medial frontal cortex. Human Brain Mapping.

  • McAllister, T. W., Saykin, A. J., Flashman, L. A., Sparling, M. B., Johnson, S. C., Guerin, S. J., et al. (1999). Brain activation during working memory 1 month after mild traumatic brain injury: a functional MRI study. Neurology, 53, 1300–1308.

    Article  PubMed  CAS  Google Scholar 

  • McAllister, T. W., Sparling, M. B., Flashman, L. A., Guerin, S. J., Mamourian, A. C., & Saykin, A. J. (2001). Differential working memory load effects after mild traumatic brain injury. NeuroImage, 14, 1004–1012.

    Article  PubMed  CAS  Google Scholar 

  • McCrea, M., Guskiewicz, K. M., Marshall, S. W., Barr, W., Randolph, C., Cantu, R. C., et al. (2003). Acute effects and recovery time following concussion in collegiate football players: the NCAA Concussion Study. JAMA: The Journal of the American Medical Association, 290, 2556–2563.

    Article  CAS  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9, 97–113.

  • Park, E., Bell, J. D., Siddiq, I. P., & Baker, A. J. (2009). An analysis of regional microvascular loss and recovery following two grades of fluid percussion trauma: a role for hypoxia-inducible factors in traumatic brain injury. Journal of Cerebral Blood Flow and Metabolism, 29, 575–584.

    Article  PubMed  CAS  Google Scholar 

  • Raichle, M. E., & Mintun, M. A. (2006). Brain work and brain imaging. Annual Review of Neuroscience, 29, 449–476.

    Article  PubMed  CAS  Google Scholar 

  • Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98, 676–682.

    Article  PubMed  CAS  Google Scholar 

  • Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306, 443–447.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, K. L., & Hall, D. A. (2008). Examining a supramodal network for conflict processing: a systematic review and novel functional magnetic resonance imaging data for related visual and auditory stroop tasks. Journal of Cognitive Neuroscience, 20, 1063–1078.

    Article  PubMed  Google Scholar 

  • Sanchez-Carrion, R., Gomez, P. V., Junque, C., Fernandez-Espejo, D., Falcon, C., Bargallo, N., et al. (2008). Frontal hypoactivation on functional magnetic resonance imaging in working memory after severe diffuse traumatic brain injury. Journal of Neurotrauma, 25, 479–494.

    Article  PubMed  Google Scholar 

  • Scheibel, R. S., Newsome, M. R., Steinberg, J. L., Pearson, D. A., Rauch, R. A., Mao, H., et al. (2007). Altered brain activation during cognitive control in patients with moderate to severe traumatic brain injury. Neurorehabilitation and Neural Repair, 21, 36–45.

    Article  PubMed  Google Scholar 

  • Schretlen, D. J., & Shapiro, A. M. (2003). A quantitative review of the effects of traumatic brain injury on cognitive functioning. International Review of Psychiatry, 15, 341–349.

    Article  PubMed  Google Scholar 

  • Shulman, G. L., Corbetta, M., Buckner, R. L., Raichle, M. E., Fiez, J. A., Miezin, F. M., et al. (1997). Top-down modulation of early sensory cortex. Cerebral Cortex, 7, 193–206.

    Article  PubMed  CAS  Google Scholar 

  • Slobounov, S. M., Zhang, K., Pennell, D., Ray, W., Johnson, B., & Sebastianelli, W. (2010). Functional abnormalities in normally appearing athletes following mild traumatic brain injury: a functional MRI study. Experimental Brain Research, 202, 341–354.

    Article  Google Scholar 

  • Smits, M., Dippel, D. W., Houston, G. C., Wielopolski, P. A., Koudstaal, P. J., Hunink, M. G., et al. (2009). Postconcussion syndrome after minor head injury: brain activation of working memory and attention. Human Brain Mapping, 30, 2789–2803.

    Article  PubMed  Google Scholar 

  • Soeda, A., Nakashima, T., Okumura, A., Kuwata, K., Shinoda, J., & Iwama, T. (2005). Cognitive impairment after traumatic brain injury: a functional magnetic resonance imaging study using the Stroop task. Neuroradiology, 47, 501–506.

    Article  PubMed  Google Scholar 

  • Spence, C., Pavani, F., & Driver, J. (2004). Spatial constraints on visual-tactile cross-modal distractor congruency effects. Cognitive, Affective, & Behavioral Neuroscience, 4, 148–169.

    Article  Google Scholar 

  • Talairach, J., & Tournoux, P. (1988). Co-planar steriotaxic atlas of the human brain. New York: Thieme.

    Google Scholar 

  • Talsma, D., Kok, A., & Ridderinkhof, K. R. (2006). Selective attention to spatial and non-spatial visual stimuli is affected differentially by age: effects on event-related brain potentials and performance data. International Journal of Psychophysiology, 62, 249–261.

    Article  PubMed  Google Scholar 

  • van Veen, V., Cohen, J. D., Botvinick, M. M., Stenger, V. A., & Carter, C. S. (2001). Anterior cingulate cortex, conflict monitoring, and levels of processing. NeuroImage, 14, 1302–1308.

    Article  PubMed  Google Scholar 

  • Weissman, D. H., Warner, L. M., & Woldorff, M. G. (2004). The neural mechanisms for minimizing cross-modal distraction. Journal of Neuroscience, 24, 10941–10949.

    Article  PubMed  CAS  Google Scholar 

  • Woodruff, P. W., Benson, R. R., Bandettini, P. A., Kwong, K. K., Howard, R. J., Talavage, T., et al. (1996). Modulation of auditory and visual cortex by selective attention is modality-dependent. NeuroReport, 7, 1909–1913.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Z., Yeo, R., Pena, A., Ling, J., Klimaj, S., Campbell, R., et al. (2012). A fMRI Study of Auditory Orienting and Inhibition of Return in Pediatric Mild Traumatic Brain Injury. Journal of Neurotrauma.

Download references

Acknowledgements

Special thanks to Diana South, George Malloy and Cathy Smith for assistance with data collection, to Reyaad Hayek, M.D. for review of anatomical images, and to Gayle Pohl and her students for generous contributions to help fund this study.

Funding

This work was supported by the National Institutes of Health [R24-HD050836, R21-NS064464-01A1 and 3 R21 NS064464-01 S1 to A.M.].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Mayer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Esm 1

(DOC 1110 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, A.R., Yang, Z., Yeo, R.A. et al. A functional MRI study of multimodal selective attention following mild traumatic brain injury. Brain Imaging and Behavior 6, 343–354 (2012). https://doi.org/10.1007/s11682-012-9178-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-012-9178-z

Keywords

Navigation