Skip to main content
Log in

Crystal Structure of Cu-Sn-In Alloys Around the η-Phase Field Studied by Neutron Diffraction

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Study of the Cu-Sn-In ternary system has become quite important in recent years, due to new environmental regulations increasingly restricting use of Pb for bonding technologies in electronic devices. A key relevant issue concerns the intermetallic phases which grow in the bonding zone and strongly affect its quality and performance. In this work, we focus on the η-phase (Cu2In or Cu6Sn5) that exists in both end binaries and as a ternary phase. We present a neutron diffraction study of the constitution and crystallography of a series of alloys around the 60 at.% Cu composition, and with In contents ranging from 0 at.% to 25 at.%, quenched from 300°C. The alloys were characterized by scanning electron microscopy (SEM), electron probe microanalysis (EPMA), and high-resolution neutron diffraction (ND). Rietveld refinement of ND data allowed improvement of the currently available model for site occupancies in the hexagonal η-phase in the binary Cu-Sn as well as in ternary alloys. For the first time, structural data are reported for the ternary Cu-Sn-In η-phase as a function of composition, information that is of fundamental technological importance as well as valuable for ongoing modeling of the ternary phase diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.T. Dinsdale, A. Kroupa, J. Vízdal, J. Vrestal, A. Watson, and A. Zemanova, COST Action 531-Atlas of Phase Diagrams for Lead-free Solders, vol. 1 (Brussels: COST Office, 2008), p. 182.

  2. W. Gale and D. Butts, Sci. Technol. Weld. Join. 9, 283 (2004).

    Article  CAS  Google Scholar 

  3. T. Velikanova, M. Turchanin, and O. Fabrichnaya, Cu-In-Sn (Copper-Indium-Tin) (Stuttgart: Materials Science International Team MSIT, 2007), p. 249.

  4. W. Koester, T. Goedecke,and D. Heine, Z. Metallkd. 63, 802 (1972).

    CAS  Google Scholar 

  5. S.K. Lin, C.F. Yang, S.H. Wu, and S.W. Chen, J. Electron. Mater. 37, 498 (2008).

    Article  CAS  Google Scholar 

  6. S.K. Lin, T.Y. Chung, S.W. Chen, and C.H. Chang, J. Mater. Res. 24, 2628 (2009).

    Article  CAS  Google Scholar 

  7. X.J. Liu, H.S. Liu, I. Ohnuma, R. Kainuma, K. Ishida, V. Itabashi, K. Kameda, and K. Yamaguchi, J. Electron. Mater. 30, 1093 (2001).

    Article  CAS  Google Scholar 

  8. M. Elding-Pontén, L. Stenberg, and S. Lidin, J. Alloys Compd. 261, 162 (1997).

    Article  Google Scholar 

  9. Z. Bahari, E. Dichi, B. Legendre, and J. Dugué, Thermochim. Acta 401, 131 (2003).

    Article  CAS  Google Scholar 

  10. K.C. Jain, M. Ellner, and K. Schubert, Z. Metallkd. 63, 258 (1972).

    CAS  Google Scholar 

  11. P.R. Subramanian and D.E. Laughlin, Bull. Alloy Phase Diagr. 10, 554 (1989).

    Article  CAS  Google Scholar 

  12. K. Nogita, Intermetallics 18, 145 (2010).

    Article  CAS  Google Scholar 

  13. U. Schwingenschlögl, C.D. Paola, K. Nogita, and C.M. Gourlay, Appl. Phys. Lett. 96, 061908 (2010).

    Article  Google Scholar 

  14. B. Peplinski, G. Schulz, D. Schultze, and E. Schierhornand, Mater. Sci. Forum 228–231, 577 (1996).

    Article  CAS  Google Scholar 

  15. T.B. Massalski, Binary Alloy Phase Diagrams, 2nd ed. (Materials Park: ASM International, 1990).

  16. J. Rodríguez-Carvajal (Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, 1990), p. 127.

  17. A. Gangulee, G.C. Das, and M.B. Bever, Metall. Mater. Trans. B 4, 2063 (1973).

    Article  CAS  Google Scholar 

  18. F. Laves and H.J. Wallbaum, Z. Anorg. Allg. Chem. 250, 110 (1942).

    Article  CAS  Google Scholar 

  19. R.S. Kalyana-Raman, R.K. Gupta, M.N. Sujir, and S. Bhan, J. Sci. Res. Banaras Hindu Univ. 14, 95 (1964).

    CAS  Google Scholar 

  20. K. Nogita, C. Gourlay, and T. Nishimura, JOM 61, 45 (2009).

    Article  CAS  Google Scholar 

  21. K. Momma, and F. Izumi, J. Appl. Crystallogr. 41, 653 (2008).

    Article  CAS  Google Scholar 

  22. Y. Watanabe, Y. Fujinaga, and H. Iwasaki, Acta Crystallogr. B 39, 306 (1983).

    Article  Google Scholar 

  23. P. Brooks and E. Gillam, Acta Metall. 18, 1181 (1970).

    Article  CAS  Google Scholar 

  24. G. Aurelio, S.A. Sommadossi, and G.J. Cuello, Neutron diffraction study of the stability and phase transitions in Cu-Sn-In alloys as alternative Pb-free solders. J. Appl. Phys., submitted.

  25. G.C. Che and M. Ellner, Powder Diffr. 7, 107 (1992).

    CAS  Google Scholar 

  26. B. Cordero, V. Gómez, A.E. Platero-Prats, M. Reves, J. Echeverría, E. Cremades, F. Barragan, and S. Álvarez, Dalton Trans. 21, 2832 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Aurelio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aurelio, G., Sommadossi, S. & Cuello, G. Crystal Structure of Cu-Sn-In Alloys Around the η-Phase Field Studied by Neutron Diffraction. J. Electron. Mater. 41, 3223–3231 (2012). https://doi.org/10.1007/s11664-012-2193-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2193-4

Keywords

Navigation