Skip to main content
Log in

The nitriding behavior of Ti-Al alloys at 1000 °C

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The nitriding behavior of a series of alloys in the binary Ti-Al system has been determined at 1000 °C, under a controlled atmosphere of pure nitrogen gas, for times ranging between 7 and 100 hours. The scales and subscales were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive and wavelength dispersive X-ray analysis, electron energy loss spectroscopy, and optical microscopy. Upon formation of a surface nitride scale, the subscale became enriched in Al and resulted in the formation of a series of Al-rich intermetallic phases. This enrichment has been linked to the transport processes in the scale and subscale and a shifting of the diffusion path toward the Al-rich corner of the ternary isotherm. The formation of Al-rich intermetallic phases in the subscale was shown to result in rapid “breakaway” nitriding of the TiAl and TiAl2 alloys. The stoichiometry of the binary nitrides AlN and TiN was measured, as well as the composition of the ternary nitride “Ti2AlN.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Beye, M. Verwerft, J.T.M. De Hosson, and R. Gronsky: Acta Mater., 1996, vol. 44 (10), pp. 4225–31.

    Article  CAS  Google Scholar 

  2. M. Dimiduk, B. Miracle, Y.-W. Kim, and M.G. Mendiratta: Iron Steel Inst. Jpn. Int., 1991, vol. 31 (10), pp. 1223–24.

    CAS  Google Scholar 

  3. G.H. Meier, F.S. Pettit, and S. Hu: J. Phys. IV, Coll. C9, suppl. J. Phys. III, 1993, vol. 3, pp. 395–402.

    CAS  Google Scholar 

  4. J.M. Rakowski, F.S. Pettit, G.H. Meier, F. Dettenwanger, E. Schumann, and M. Ruhle: Scripta Metall. Mater., 1995, vol. 33 (6), pp. 997–1003.

    Article  CAS  Google Scholar 

  5. T.K. Roy, R. Balasubramaniam, and A. Ghosh: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 4003–10.

    Article  CAS  Google Scholar 

  6. S. Becker, A. Rahmel, M. Schorr, and M. Schutze: Oxid. Met., 1992, vol. 38 (5–6), pp. 425–64.

    Article  CAS  Google Scholar 

  7. J.C. Schuster and J. Bauer: J. Solid State Chem., 1984, vol. 53, pp. 260–65.

    Article  CAS  Google Scholar 

  8. W. Jeitschko, H. Nowotny, and F. Benesovsky: Monatsh. Chem., 1963, vol. 94, pp. 1198–1200.

    Article  CAS  Google Scholar 

  9. N. Durlu, U. Gruber, M.A. Pietzka, H. Schmidt, and J.C. Schuster: Z. Metallkd., 1997, vol. 88 (5), pp. 390–400.

    CAS  Google Scholar 

  10. M. Pietzka and J.C. Schuster: J. Am. Ceramic Soc., 1996, vol. 79 (9), pp. 2321–30.

    Article  CAS  Google Scholar 

  11. T.B. Massalaski: Binary Alloy Phase Diagrams, ASM INTERNATIONAL, Metals Park, OH, 1990.

    Google Scholar 

  12. T. Wahlstrom, L. Hultman, J.-E. Sundgren, F. Adibi, I. Petrov, and J.E. Greene: Thin Solid Films, 1993, vol. 235, pp. 62–70.

    Article  Google Scholar 

  13. H.A. Jehn, S. Hofmann, V.-E. Ruckborn and W.-D. Munz: Journal of Vacuum Science Technol. A, 1986, vol. 4 (6), pp. 2701–12.

    Article  CAS  Google Scholar 

  14. M.H. El-Sayed, M. Naka, and J.C. Schuster: J. Mater. Sci., 1997, vol. 32, pp. 2715–12.

    Article  CAS  Google Scholar 

  15. A.D. Dalvi and D.E. Coates: Oxid. Met., 1972, vol. 5 (2), pp. 113–35.

    Article  CAS  Google Scholar 

  16. K.N. Strafford and J.M. Towell: Oxid. Met., 1976, vol. 10 (1), pp. 41–67.

    Article  CAS  Google Scholar 

  17. F. Anglezio-Abautret, B. Pellissier, M. Miloche, and P. Eveno: J. Eur. Ceramic Soc., 1991, vol. 8, pp. 299–304.

    Article  CAS  Google Scholar 

  18. M.J. Kaufmann, D.G. Karitzer, R.D. Shull, and H.L. Fraser: Scripta Metall., 1986, vol. 20, pp. 103–08.

    Article  Google Scholar 

  19. R. Schmid-Fetzer and K. Zeng: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1949–51.

    Article  CAS  Google Scholar 

  20. A.T. Dinsdale: Data for Pure Elements, Scientific Group Thermodata Europe (SGTE), CALPHAD, 1991, vol. 15 (4), pp. 317–425.

    CAS  Google Scholar 

  21. N. Dupin: Ph.D. Thesis, Institut National Polytechnique de Grenoble, Grenoble, France, 1995.

    Google Scholar 

  22. E.P. George, J.A. Horton, W.D. Porter, and J.H. Schneibel: J. Mater. Res., 1990, vol. 5 (8), pp. 1639–48.

    CAS  Google Scholar 

  23. S. Becker, A. Rahmel, M. Schorr, and M. Schutze: Oxid. Met., 1992, vol. 38, pp. 425–64.

    Article  CAS  Google Scholar 

  24. P. Kofstad: High Temperature Corrosion, Elsevier Applied Science Publishers Ltd., New York, NY, 1988.

    Google Scholar 

  25. R.F. Egerton: Electron Energy Loss Spectroscopy in the Electron Microscope, 2nd ed., Plenum Press, New York, NY, 1996.

    Google Scholar 

  26. T. Ikeda and H. Satoh: J. Jpn. Inst. Met., 1993, vol. 57 (8), pp. 919–25.

    CAS  Google Scholar 

  27. K. Zeng and R. Schmid-Fetzer: Thermodynamic modeling and applications of the Ti-Al-N Phase Diagram, Thermodynamics of Alloy Formation, Y.A. Chang and F. Sommer, eds., TMS, Warrendale, PA, 1997, pp. 275–94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magnan, J., Weatherly, G.C. & Cheynet, M.C. The nitriding behavior of Ti-Al alloys at 1000 °C. Metall Mater Trans A 30, 19–29 (1999). https://doi.org/10.1007/s11661-999-0192-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-999-0192-8

Keywords

Navigation