Skip to main content

Advertisement

Log in

Modifying motor unit territory placement in the Fuglevand model

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The Fuglevand model is often used to address challenging questions in neurophysiology; however, there are elements of the neuromuscular system unaccounted for in the model. For instance, in some muscles, slow and fast motor units (MUs) tend to reside deep and superficially in the muscle, respectively, necessarily altering the development of surface electromyogram (EMG) power during activation. Thus, the objective of this study was to replace the randomized MU territory (MUT) placement algorithm in the Fuglevand model with an optimized method capable of reflecting these observations. To accomplish this, a weighting term was added to a previously developed optimization algorithm to encourage regionalized MUT placement. The weighting term consequently produced significantly different muscle fibre type content in the deep and superficial portions of the muscle. The relation between simulated EMG and muscle force was found to be significantly affected by regionalization. These changes were specifically a function of EMG power, as force was unaffected by regionalization. These findings suggest that parameterizing MUT regionalization will allow the model to produce a larger variety of EMG–force relations, as is observed physiologically, and could potentially simulate the loss of specific MU types as observed in ageing and clinical populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alkner BA, Tesch PA, Berg HE (2000) Quadriceps EMG/force relationship in knee extension and leg press. Med Sci Sports Exerc 32:459–463

    Article  CAS  PubMed  Google Scholar 

  2. Bottinelli R, Canepari M, Pellegrino MA, Reggiani C (1996) Force-velocity properties of human skeletal muscle fibres: myosin heavy chain isoform and temperature dependence. J Physiol 495:573–586. doi:10.1113/jphysiol.1996.sp021617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brown SHM, McGill SM (2008) Co-activation alters the linear versus non-linear impression of the EMG-torque relationship of trunk muscles. J Biomech 41:491–497. doi:10.1016/j.jbiomech.2007.10.015

    Article  PubMed  Google Scholar 

  4. Bruce V, Turek RJ (1985) Muscle fibre variation in the gluteus medius of the horse. Equine Vet J 17:317–321. doi:10.1111/j.2042-3306.1985.tb02508.x

    Article  CAS  PubMed  Google Scholar 

  5. Clamann HP (1969) Statistical analysis of motor unit firing patterns in a human skeletal muscle. Biophys J 9:1233–1251. doi:10.1016/S0006-3495(69)86448-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Daube JR (2000) Electrodiagnostic studies in amyotrophic lateral sclerosis and other motor neuron disorders. Muscle Nerve 23:1488–1502. doi:10.1002/1097-4598(200010)23:10<1488:AID-MUS4>3.0.CO;2-E

    Article  CAS  PubMed  Google Scholar 

  7. Day SJ, Hulliger M (2001) Experimental simulation of cat electromyogram: evidence for algebraic summation of motor-unit action-potential trains. J Neurophysiol 86:2144–2158

    CAS  PubMed  Google Scholar 

  8. de Luca CJ (1997) The use of surface electromyography in biomechanics. J Appl Biomech 13:135–163. doi:10.1123/jab.13.2.135

    Article  Google Scholar 

  9. Dennett X, Fry HJH (1988) Overuse syndrome: a muscle biopsy study. Lancet 331:905–908. doi:10.1016/S0140-6736(88)91714-X

    Article  Google Scholar 

  10. Dideriksen JL, Negro F, Enoka RM, Farina D (2012) Motor unit recruitment strategies and muscle properties determine the influence of synaptic noise on force steadiness. J Neurophysiol 107:3357–3369. doi:10.1152/jn.00938.2011

    Article  PubMed  PubMed Central  Google Scholar 

  11. Edgerton VR, Smith JL, Simpson DR (1975) Muscle fibre type populations of human leg muscles. Histochem J 7:259–266. doi:10.1007/BF01003594

    Article  CAS  PubMed  Google Scholar 

  12. Elder GCB, Bradbury K, Roberts R (1982) Variability of fiber type distributions within human muscles. J Appl Physiol 53:1473–1480

    CAS  PubMed  Google Scholar 

  13. Enoka RM, Fuglevand AJ (2001) Motor unit physiology: some unresolved issues. Muscle Nerve 24:4–17. doi:10.1002/1097-4598(200101)24:1<4:AID-MUS13>3.0.CO;2-F

    Article  CAS  PubMed  Google Scholar 

  14. Farina D, Merletti R (2001) A novel approach for precise simulation of the EMG signal detected by surface electrodes. IEEE Trans Biomed Eng 48:637–646. doi:10.1109/10.923782

    Article  CAS  PubMed  Google Scholar 

  15. Farina D, Mesin L, Martina S, Merletti R (2004) A surface EMG generation model with multilayer cylindrical description of the volume conductor. IEEE Trans Biomed Eng 51:415–426. doi:10.1109/TBME.2003.820998

    Article  PubMed  Google Scholar 

  16. Fuglevand AJ, Winter DA, Patla AE (1993) Models of recruitment and rate coding organization in motor-unit pools. J Neurophysiol 70:2470–2488

    CAS  PubMed  Google Scholar 

  17. Fuglevand AJ, Winter DA, Patla AE, Stashuk D (1992) Detection of motor unit action potentials with surface electrodes: influence of electrode size and spacing. Biol Cybern 67:143–153. doi:10.1007/BF00201021

    Article  CAS  PubMed  Google Scholar 

  18. Gemperline JJ, Allen S, Walk D, Rymer WZ (1995) Characteristics of motor unit discharge in subjects with hemiparesis. Muscle Nerve 18:1101–1114. doi:10.1002/mus.880181006

    Article  CAS  PubMed  Google Scholar 

  19. Grotmol S, Totland GK, Kryvi H, Breistøl A, Essén-Gustavsson B, Lindholm A (2002) Spatial distribution of fiber types within skeletal muscle fascicles from Standardbred horses. Anat Rec 268:131–136. doi:10.1002/ar.10140

    Article  PubMed  Google Scholar 

  20. Guimarães ACS, Herzog W, Allinger TL, Zhang YT (1995) The EMG–force relationship of the cat soleus muscle and its association with contractile conditions during locomotion. J Exp Biol 198:975–987

    PubMed  Google Scholar 

  21. Hamilton AF, Jones KE, Wolpert DM (2004) The scaling of motor noise with muscle strength and motor unit number in humans. Exp Brain Res 157:417–430. doi:10.1007/s00221-004-1856-7

    Article  PubMed  Google Scholar 

  22. Harridge SDR, Bottinelli R, Canepari M, Pellegrino M, Reggiani C, Esbjörnsson M, Balsom PD, Saltin B (1998) Sprint training, in vitro and in vivo muscle function, and myosin heavy chain expression. J Appl Physiol 84:442–449

    CAS  PubMed  Google Scholar 

  23. Harridge SDR, Bottinelli R, Canepari M, Pellegrino MA, Reggiani C, Esbjörnsson M, Saltin B (1996) Whole-muscle and single-fibre contractile properties and myosin heavy chain isoforms in humans. Pflugers Arch 432:913–920. doi:10.1007/s004240050215

    Article  CAS  PubMed  Google Scholar 

  24. Hegedus J, Putman CT, Tyreman N, Gordon T (2008) Preferential motor unit loss in the SOD1 G93A transgenic mouse model of amyotrophic lateral sclerosis. J Physiol 586:3337–3351. doi:10.1113/jphysiol.2007.149286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Henriksson-Larsén KB, Lexell J, Sjöström M (1983) Distribution of different fibre types in human skeletal muscles. I. Method for the preparation and analysis of cross-sections of whole tibialis anterior. Histochem J 15:167–178. doi:10.1007/BF01042285

    Article  PubMed  Google Scholar 

  26. Hof AL, van den Berg J (1977) Linearity between the weighted sum of the EMGs of the human triceps surae and the total torque. J Biomech 10:529–539. doi:10.1016/0021-9290(77)90033-1

    Article  CAS  PubMed  Google Scholar 

  27. Inman VT, Ralston HJ, Saunders JBdCM, Feinstein B, Wright EW Jr (1952) Relation of human electromyogram to muscular tension. Electroencephalogr Clin Neurophysiol 4:187–194. doi:10.1016/0013-4694(52)90008-4

    Article  CAS  PubMed  Google Scholar 

  28. Jahanmiri-Nezhad F, Hu X, Suresh NL, Rymer WZ, Zhou P (2014) EMG–force relation in the first dorsal interosseous muscle of patients with amyotrophic lateral sclerosis. NeuroRehabilitation 35:307–314. doi:10.3233/NRE-141125

    PubMed  PubMed Central  Google Scholar 

  29. Jenkins NDM, Buckner SL, Cochrane KC, Bergstrom HC, Palmer TB, Johnson GO, Schmidt RJ, Housh TJ, Cramer JT (2014) Age-related differences in rates of torque development and rise in EMG are eliminated by normalization. Exp Gerontol 57:18–28. doi:10.1016/j.exger.2014.04.015

    Article  PubMed  Google Scholar 

  30. Jiang N, Englehart KB, Parker PA (2009) Extracting simultaneous and proportional neural control information for multiple-DOF prostheses from the surface electromyographic signal. IEEE Trans Biomed Eng 56:1070–1080. doi:10.1109/TBME.2008.2007967

    Article  PubMed  Google Scholar 

  31. Johnson MA, Polgar J, Weightman D, Appleton D (1973) Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci 18:111–129. doi:10.1016/0022-510X(73)90023-3

    Article  CAS  PubMed  Google Scholar 

  32. Johnston JA, Formicone G, Hamm TM, Santello M (2010) Assessment of across-muscle coherence using multi-unit vs. single-unit recordings. Exp Brain Res 207:269–282. doi:10.1007/s00221-010-2455-4

    Article  PubMed  Google Scholar 

  33. Jones KE, Hamilton AFdC, Wolpert DM (2002) Sources of signal-dependent noise during isometric force production. J Neurophysiol 88:1533–1544

    Article  PubMed  Google Scholar 

  34. Kanda K, Hashizume K (1992) Factors causing difference in force output among motor units in the rat medial gastrocnemius muscle. J Physiol 448:677–695. doi:10.1113/jphysiol.1992.sp019064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Keenan KG, Farina D, Maluf KS, Merletti R, Enoka RM (2005) Influence of amplitude cancellation on the simulated surface electromyogram. J Appl Physiol 98:120–131. doi:10.1152/japplphysiol.00894.2004

    Article  PubMed  Google Scholar 

  36. Keenan KG, Valero-Cuevas FJ (2007) Experimentally valid predictions of muscle force and EMG in models of motor-unit function are most sensitive to neural properties. J Neurophysiol 98:1581–1590. doi:10.1152/jn.00577.2007

    Article  PubMed  Google Scholar 

  37. Körner L, Parker P, Almström C, Andersson GBJ, Herberts P, Kadefors R, Palmerud G, Zetterberg C (1984) Relation of intramuscular pressure to the force output and myoelectric signal of skeletal muscle. J Orthop Res 2:289–296. doi:10.1002/jor.1100020311

    Article  PubMed  Google Scholar 

  38. Krivickas LS, Yang JI, Kim SK, Frontera WR (2002) Skeletal muscle fiber function and rate of disease progression in amyotrophic lateral sclerosis. Muscle Nerve 26:636–643. doi:10.1002/mus.10257

    Article  PubMed  Google Scholar 

  39. Lawrence JH, De Luca CJ (1983) Myoelectric signal versus force relationship in different human muscles. J Appl Physiol 54:1653–1659

    CAS  PubMed  Google Scholar 

  40. Lexell J, Henriksson-Larsén K, Sjöström M (1983) Distribution of different fibre types in human skeletal muscles. 2. A study of cross-sections of whole m. vastus lateralis. Acta Physiol Scand 117:115–122. doi:10.1111/j.1748-1716.1983.tb07185.x

    Article  CAS  PubMed  Google Scholar 

  41. Lieber RL, Fridén J (2000) Functional and clinical significance of skeletal muscle architecture. Muscle Nerve 23:1647–1666. doi:10.1002/1097-4598(200011)23:11<1647:AID-MUS1>3.0.CO;2-M

    Article  CAS  PubMed  Google Scholar 

  42. Lukács M, Vécsei L, Beniczky S (2008) Large motor units are selectively affected following a stroke. Clin Neurophysiol 119:2555–2558. doi:10.1016/j.clinph.2008.08.005

    Article  PubMed  Google Scholar 

  43. Madeleine P, Bajaj P, Søgaard K, Arendt-Nielsen L (2001) Mechanomyography and electromyography force relationships during concentric, isometric and eccentric contractions. J Electromyogr Kinesiol 11:113–121. doi:10.1016/S1050-6411(00)00044-4

    Article  CAS  PubMed  Google Scholar 

  44. Milner-Brown HS, Stein RB (1975) The relation between the surface electromyogram and muscular force. J Physiol 246:549–569. doi:10.1113/jphysiol.1975.sp010904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mockford M, Caulton JM (2010) The pathophysiological basis of weakness in children with cerebral palsy. Pediatr Phys Ther 22:222–233. doi:10.1097/PEP.0b013e3181dbaf96

    Article  PubMed  Google Scholar 

  46. Monti RJ, Roy RR, Edgerton VR (2001) Role of motor unit structure in defining function. Muscle Nerve 24:848–866. doi:10.1002/mus.1083

    Article  CAS  PubMed  Google Scholar 

  47. Moritz CT, Barry BK, Pascoe MA, Enoka RM (2005) Discharge rate variability influences the variation in force fluctuations across the working range of a hand muscle. J Neurophysiol 93:2449–2459. doi:10.1152/jn.01122.2004

    Article  PubMed  Google Scholar 

  48. Navallas J, Malanda A, Gila L, Rodriguez J, Rodriguez I (2010) A muscle architecture model offering control over motor unit fiber density distributions. Med Biol Eng Comput 48:875–886. doi:10.1007/s11517-010-0642-x

    Article  PubMed  Google Scholar 

  49. Ng AV, Kent-Braun JA (1999) Slowed muscle contractile properties are not associated with a decreased EMG/force relationship in older humans. J Gerontol A Biol Sci Med Sci 54:B452–B458. doi:10.1093/gerona/54.10.B452

    Article  CAS  PubMed  Google Scholar 

  50. Oomen NMCW, van Dieën JH (2016) Effects of age on force steadiness: a literature review and meta-analysis. Ageing Res Rev. doi:10.1016/j.arr.2016.11.004

    PubMed  Google Scholar 

  51. Potvin JR, Norman RW, McGill SM (1996) Mechanically corrected EMG for the continuous estimation of erector spinae muscle loading during repetitive lifting. Eur J Appl Physiol 74:119–132. doi:10.1007/BF00376504

    Article  CAS  Google Scholar 

  52. Roy RR, Garfinkel A, Ounjian M, Payne J, Hirahara A, Hsu E, Edgerton VR (1995) Three-dimensional structure of cat tibialis anterior motor units. Muscle Nerve 18:1187–1195. doi:10.1002/mus.880181015

    Article  CAS  PubMed  Google Scholar 

  53. Shima N, McNeil CJ, Rice CL (2007) Mechanomyographic and electromyographic responses to stimulated and voluntary contractions in the dorsiflexors of young and old men. Muscle Nerve 35:371–378. doi:10.1002/mus.20704

    Article  PubMed  Google Scholar 

  54. Solomonow M, Baratta R, Zhou BH, Shoji H, d’Ambrosia RD (1987) The EMG–force model of electrically stimulated muscles: dependence on control strategy and predominant fiber composition. IEEE Trans Biomed Eng 34:692–703. doi:10.1109/TBME.1987.325994

    Article  CAS  PubMed  Google Scholar 

  55. Staudenmann D, Roeleveld K, Stegeman DF, van Dieën JH (2010) Methodological aspects of SEMG recordings for force estimation–a tutorial and review. J Electromyogr Kinesiol 20:375–387. doi:10.1016/j.jelekin.2009.08.005

    Article  PubMed  Google Scholar 

  56. Susheela AK, Hudgson P, Walton JN (1968) Murine muscular dystrophy. Some histochemical and biochemical observations. J Neurol Sci 7:437–463. doi:10.1016/0022-510X(68)90052-X

    Article  CAS  PubMed  Google Scholar 

  57. Susheela AK, Walton JN (1969) Note on the distribution of histochemical fibre types in some normal human muscles. A study on autopsy material. J Neurol Sci 8:201–207. doi:10.1016/0022-510X(69)90110-5

    Article  CAS  PubMed  Google Scholar 

  58. Tang A, Rymer WZ (1981) Abnormal force-EMG relations in paretic limbs of hemiparetic human subjects. J Neurol Neurosurg Psychiatry 44:690–698. doi:10.1136/jnnp.44.8.690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tian SL, Liu Y, Li L, Fu WJ, Peng CH (2010) Mechanomyography is more sensitive than EMG in detecting age-related sarcopenia. J Biomech 43:551–556. doi:10.1016/j.jbiomech.2009.09.034

    Article  PubMed  Google Scholar 

  60. Tucker K, Falla D, Graven-Nielsen T, Farina D (2009) Electromyographic mapping of the erector spinae muscle with varying load and during sustained contraction. J Electromyogr Kinesiol 19:373–379. doi:10.1016/j.jelekin.2007.10.003

    Article  CAS  PubMed  Google Scholar 

  61. Zhou P, Li X, Rymer WZ (2013) EMG–force relations during isometric contractions of the first dorsal interosseous muscle after stroke. Topics Stroke Rehabil 20:537–544. doi:10.1310/tsr2006-537

    Article  Google Scholar 

  62. Zhou P, Rymer WZ (2004) Factors governing the form of the relation between muscle force and the EMG: a simulation study. J Neurophysiol 92:2878–2886. doi:10.1152/jn.00367.2004

    Article  PubMed  Google Scholar 

  63. Zhou P, Suresh NL, Rymer WZ (2007) Model based sensitivity analysis of EMG–force relation with respect to motor unit properties: applications to muscle paresis in stroke. Ann Biomed Eng 35:1521–1531. doi:10.1007/s10439-007-9329-3

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Brian MacIntosh, Dr. John Bertram, and Dr. David Westwick for their thoughtful feedback throughout this study, particularly on this manuscript.

Funding

J.W.R. was funded by the Natural Sciences and Engineering Research Council (NSERC) Canada Graduate Scholarship (Master’s), the Alberta Innovates Technology Futures NSERC Top-Up Award, and the NSERC Collaborative Research and Training Experience (CREATE) Academic Leaders Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason W. Robertson.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robertson, J.W., Johnston, J.A. Modifying motor unit territory placement in the Fuglevand model. Med Biol Eng Comput 55, 2015–2025 (2017). https://doi.org/10.1007/s11517-017-1645-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1645-7

Keywords

Navigation