Skip to main content
Log in

Characteristics of Symmetric Surface Plasmon Polariton Mode in Glass–Metal–Glass Waveguide

  • Published:
Plasmonics Aims and scope Submit manuscript

An Erratum to this article was published on 18 October 2013

Abstract

The propagation characteristics of symmetric surface plasmon polariton mode in a glass–metal–glass waveguide are presented. Gallium lanthanum sulfide has been taken as the glass and silver (Ag) has been used as the metal. The analysis has been done both numerically and analytically. A two-dimensional finite-difference time-domain-based simulation model has been developed in order to analyze the propagation characteristics numerically. The obtained results using numerical and analytical methods have been compared and a very good agreement has been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830

    Article  CAS  Google Scholar 

  2. Dionne J, Lezec H, Atwater HA (2006) Highly confined photon transport in subwavelength metallic slot waveguides. Nano Lett 6(9):1928–1932

    Article  CAS  Google Scholar 

  3. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4(2):83–91

    Article  CAS  Google Scholar 

  4. Haes AJ, Van Duyne RP (2002) A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124(35):10596–10604

    Article  CAS  Google Scholar 

  5. Blaikie RJ, Melville DO (2005) Imaging through planar silver lenses in the optical near field. J Opt A Pure Appl Opt 7(2):S176

    Article  CAS  Google Scholar 

  6. Melville DO, Blaikie RJ (2005) Super-resolution imaging through a planar silver layer. Opt Express 13(6):2127–2134

    Article  CAS  Google Scholar 

  7. Hosseini A, Massoud Y (2006) A low-loss metal–insulator–metal plasmonic Bragg reflector. Opt Express 14(23):11318–11323

    Article  Google Scholar 

  8. Henzie J, Lee MH, Odom TW (2007) Multiscale patterning of plasmonic metamaterials. Nat Nanotechnol 2(9):549–554

    Article  CAS  Google Scholar 

  9. Ferry VE, Sweatlock LA, Pacifici D, Atwater HA (2008) Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett 8(12):4391–4397

    Article  CAS  Google Scholar 

  10. Chou SY, Ding W (2013) Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array. Opt Express 21(101):A60–A76

    Article  CAS  Google Scholar 

  11. Asobe M (1997) Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching. Opt Fiber Technol 3(2):142–148

    Article  Google Scholar 

  12. Des Francs GC, Grandidier J, Massenot S, Bouhelier A, Weeber J-C, Dereux A (2009) Integrated plasmonic waveguides: a mode solver based on density of states formulation. Phys Rev B 80(11):115419

    Article  Google Scholar 

  13. Sámson ZL, Yen SC, MacDonald KF, Knight K, Li S, Hewak DW, Tsai DP, Zheludev NI (2010) Chalcogenide glasses in active plasmonics. Physica Status Solidi (RRL)-Rapid Res Lett 4(10):274–276

    Article  Google Scholar 

  14. Rakic AD, Djurišic AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37(22):5271–5283

    Article  CAS  Google Scholar 

  15. Sagor RH (2012) Plasmon enhanced symmetric mode generation in metal–insulator–metal structure with Kerr nonlinear effect. Int J Comput Appl 50(18):24–28

    Google Scholar 

  16. Yee K (1966) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antenn Propag 14(3):302–307

    Article  Google Scholar 

  17. Berenger JP (1994) A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 114(2):185–200

    Article  Google Scholar 

  18. Taflove A, Hagness SC (2000) Computational electrodynamics: the finite-difference time-domain method, 2nd edn. Artech House, Norwood

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Ghulam Saber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saber, M.G., Sagor, R.H. Characteristics of Symmetric Surface Plasmon Polariton Mode in Glass–Metal–Glass Waveguide. Plasmonics 8, 1621–1625 (2013). https://doi.org/10.1007/s11468-013-9579-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9579-x

Keywords

Navigation