Skip to main content
Log in

Fulde–Ferrell–Larkin–Ovchinnikov pairing states between s- and p-orbital fermions

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We study the pairing states in a largely imbalanced two-component Fermi gas loaded in an anisotropic two-dimensional optical lattice, where the spin-up and spin-down fermions are filled to the s- and p x -orbital bands, respectively. We show that owing to the relative inversion of the band structures of the s and p x orbitals, the system favors pairing between two fermions on the same side of the Brillouin zone, leading to a large stable regime for states with a finite center-of-mass momentum, i.e., the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) state. In particular, when two Fermi surfaces are close in momentum space, a nesting effect stabilizes a special type of π-FFLO phase with a spatial modulation of π along the easily tunneled x direction. We map out the zero-temperature phase diagrams within the mean-field approach for various aspect ratios within the two-dimensional plane and calculate the Berezinskii–Kosterlitz–Thouless (BKT) transition temperatures T BKT for different phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Casalbuoni and G. Nardulli, Inhomogeneous superconductivity in condensed matter and QCD, Rev. Mod. Phys. 76(1), 263 (2004)

    Article  ADS  Google Scholar 

  2. M. Alford, J. A. Bowers, and K. Rajagopal, Crystalline color superconductivity, Phys. Rev. D 63(7), 074016 (2001)

    Article  ADS  Google Scholar 

  3. Y. A. Liao, A. S. C. Rittner, T. Paprotta, W. Li, G. B. Partridge, R. G. Hulet, S. K. Baur, and E. J. Mueller, Spin-imbalance in a one-dimensional Fermi gas, Nature 467 (7315), 567 (2010)

    Article  ADS  Google Scholar 

  4. P. Fulde and R. A. Ferrell, Superconductivity in a strong spin-exchange field, Phys. Rev. 135(3A), A550 (1964)

  5. A. I. Larkin and Y. N. Ovchinnikov, Nonuniform state of superconductors, Sov. Phys. JETP 20, 762 (1965)

    Google Scholar 

  6. W. V. Liu and F. Wilczek, Interior gap superfluidity, Phys. Rev. Lett. 90(4), 047002 (2003)

    Article  ADS  Google Scholar 

  7. G. Sarma, On the influence of a uniform exchange field acting on the spins of the conduction electrons in a superconductor, J. Phys. Chem. Solids 24(8), 1029 (1963)

    Article  ADS  MATH  Google Scholar 

  8. H. Müther and A. Sedrakian, Spontaneous breaking of rotational symmetry in superconductors, Phys. Rev. Lett. 88(25), 252503 (2002)

    Article  ADS  Google Scholar 

  9. D. E. Sheehy and L. Radzihovsky, BEC–BCS crossover, phase transitions and phase separation in polarized resonantly-paired superfluids, Ann. Phys. 322 (8), 1790 (2007)

  10. G. Orso, Attractive Fermi gases with unequal spin populations in highly elongated traps, Phys. Rev. Lett. 98(7), 070402 (2007)

    Article  ADS  Google Scholar 

  11. H. Hu, X. J. Liu, and P. D. Drummond, Phase diagram of a strongly interacting polarized Fermi gas in one dimension, Phys. Rev. Lett. 98(7), 070403 (2007)

    Article  ADS  Google Scholar 

  12. W. Zhang and W. Yi, Topological Fulde–Ferrell–Larkin–Ovchinnikov states in spin–orbit-coupled Fermi gases, Nat. Commun. 4, 2711 (2013)

    ADS  Google Scholar 

  13. W. Yi, W. Zhang, and X. L. Cui, Pairing superfluidity in spin–orbit coupled ultracold Fermi gases, Sci. China Phys. Mech. Astron. 58(1), 014201 (2015)

    Article  Google Scholar 

  14. T. K. Koponen, T. Paananen, J. P. Martikainen, M. R. Bakhtiari, and P. Törmä, FFLO state in 1-, 2- and 3-dimensional optical lattices combined with a nonuniform background potential, New J. Phys. 10 (4), 045014 (2008)

    Article  ADS  Google Scholar 

  15. Z. Cai, Y. Wang, and C. Wu, Stable Fulde–Ferrell–Larkin–Ovchinnikov pairing states in two-dimensional and three-dimensional optical lattices, Phys. Rev. A 83(6), 063621 (2011)

    Article  ADS  Google Scholar 

  16. Z. Zhang, H. H. Hung, C. M. Ho, E. Zhao, and W. V. Liu, Modulated pair condensate of p-orbital ultracold fermions, Phys. Rev. A 82(3), 033610 (2010)

    Article  ADS  Google Scholar 

  17. S. Yin, J. E. Baarsma, M. O. J. Heikkinen, J. P. Martikainen, and P. Törmä, Superfluid phases of fermions with hybridized s and p orbitals, Phys. Rev. A 92 (5), 053616 (2015)

    Article  ADS  Google Scholar 

  18. B. Liu, X. Li, R. G. Hulet, and W. V. Liu, Detecting pphase superfluids with p-wave symmetry in a quasi-onedimensional optical lattice, Phys. Rev. A 94, 031602(R) (2016)

    Article  ADS  Google Scholar 

  19. A. I. Buzdin, Proximity effects in superconductorferromagnet heterostructures, Rev. Mod. Phys. 77(3), 935 (2005) (and references therein)

    Article  ADS  Google Scholar 

  20. C. Bernhard, J. L. Tallon, C. Niedermayer, T. Blasius, A. Golnik, E. Brücher, R. K. Kremer, D. R. Noakes, C. E. Stronach, and E. J. Ansaldo, Coexistence of ferromagnetism and superconductivity in the hybrid ruthenate-cuprate compound RuSr2GdCu2O8 studied by muon spin rotation and dc magnetization, Phys. Rev. B 59(21), 14099 (1999)

    Article  ADS  Google Scholar 

  21. A. C. McLaughlin, W. Zhou, J. P. Attfield, A. N. Fitch, and J. L. Tallon, Structure and microstructure of the ferromagnetic superconductor RuSr2GdCu2O8, Phys. Rev. B 60(10), 7512 (1999)

    Article  ADS  Google Scholar 

  22. O. Chmaissem, J. D. Jorgensen, H. Shaked, P. Dollar, and J. L. Tallon, Crystal and magnetic structure of ferromagnetic superconducting RuSr2GdCu2O8, Phys. Rev. B 61(9), 6401 (2000)

    Article  ADS  Google Scholar 

  23. I. Zapata, B. Wunsch, N. T. Zinner, and E. Demler, p-phases in balanced fermionic superfluids on spindependent optical lattices, Phys. Rev. Lett. 105 (9), 095301 (2010)

    Article  ADS  Google Scholar 

  24. I. E. Mooij, T. P. Orlando, L. Levitov, L. Tian, C. H. van der Wal, and S. Lloyd, Josephson persistent-current qubit, Science 285 (5430), 1036 (1999)

    Article  Google Scholar 

  25. L. B. Ioffe, V. B. Geshkenbein, M. V. Feigel’man, A. L. Fauchère, and G. Blatter, Environmentally decoupled sds-wave Josephson junctions for quantum computing, Nature 398 (6729), 679 (1999)

    Article  ADS  Google Scholar 

  26. T. Müller, S. Fölling, A. Widera, and I. Bloch, State preparation and dynamics of ultracold atoms in higher lattice orbitals, Phys. Rev. Lett. 99(20), 200405 (2007)

    Article  Google Scholar 

  27. G. Wirth, M. Ölschläger, and A. Hemmerich, Evidence for orbital superfluidity in the P-band of a bipartite optical square lattice, Nat. Phys. 7(2), 147 (2011)

    Article  Google Scholar 

  28. P. Soltan-Panahi, D. S. Lühmann, J. Struck, P. Windpassinger, and K. Sengstock, Quantum phase transition to unconventional multi-orbital superfluidity in optical lattices, Nat. Phys. 8(1), 71 (2011)

    Article  Google Scholar 

  29. D. S. Petrov and G. V. Shlyapnikov, Interatomic collisions in a tightly confined Bose gas, Phys. Rev. A 64(1), 012706 (2001)

    Article  ADS  Google Scholar 

  30. J. P. Kestner and L. M. Duan, Effective low-dimensional Hamiltonian for strongly interacting atoms in a transverse trap, Phys. Rev. A 76(6), 063610 (2007)

    Article  ADS  Google Scholar 

  31. W. Zhang, G. D. Lin, and L. M. Duan, BCS–BEC crossover of a quasi-two-dimensional Fermi gas: The significance of dressed molecules, Phys. Rev. A 77 (6), 063613 (2008)

    Article  ADS  Google Scholar 

  32. W. Zhang, G. D. Lin, and L. M. Duan, Berezinskii–Kosterlitz–Thouless transition in a trapped quasi-twodimensional Fermi gas near a Feshbach resonance, Phys. Rev. A 78(4), 043617 (2008)

    Article  ADS  Google Scholar 

  33. S. S. Botelho and C. A. R. Sá de Melo, Vortex-antivortex lattice in ultracold fermionic gases, Phys. Rev. Lett. 96 (4), 040404 (2006)

    Article  ADS  Google Scholar 

  34. V. L. Berezinskii, Destruction of long-range order in one-dimensional and two-dimensional systems having a con-tinuous symmetry group (I): Classical systems, Sov. Phys. JETP 32, 493 (1971)

    ADS  MathSciNet  Google Scholar 

  35. J. M. Kosterlitz and D. Thouless, Long range order and metastability in two dimensional solids and superfluids. (Application of dislocation theory), J. Phys. C: Solid State Phys. 5, L124 (1972)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11274009, 11274025, 11434011, 11522436, 11622428, 61475006, and 61675007), the National Key R&D Program (Grant Nos. 2013CB922000 and 2016YFA0301201), the Ministry of Science and Technology of China (Grant No. 2016YFA0301302), and the Research Funds of Renmin University of China (Grant Nos. 10XNL016 and 16XNLQ03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Additional information

arXiv: 1612.01709v1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, SY., Jiang, JW., Shi, YR. et al. Fulde–Ferrell–Larkin–Ovchinnikov pairing states between s- and p-orbital fermions. Front. Phys. 12, 126701 (2017). https://doi.org/10.1007/s11467-017-0681-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-017-0681-y

Keywords

Navigation