Skip to main content
Log in

Double-temperature ratchet model and current reversal of coupled Brownian motors

Frontiers of Physics Aims and scope Submit manuscript

Abstract

On the basis of the transport features and experimental phenomena observed in studies of molecular motors, we propose a double-temperature ratchet model of coupled motors to reveal the dynamical mechanism of cooperative transport of motors with two heads, where the interactions and asynchrony between two motor heads are taken into account. We investigate the collective unidirectional transport of coupled system and find that the direction of motion can be reversed under certain conditions. Reverse motion can be achieved by modulating the coupling strength, coupling free length, and asymmetric coefficient of the periodic potential, which is understood in terms of the effective potential theory. The dependence of the directed current on various parameters is studied systematically. Directed transport of coupled Brownian motors can be manipulated and optimized by adjusting the pulsation period or the phase shift of the pulsation temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Reimann and M. Evstigneev, Pulsating potential ratchet, Europhys. Lett. 78(5), 50004 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. F. Marchesoni, Transport properties in disordered ratchet potentials, Phys. Rev. E 56(3), 2492 (1997)

    Article  ADS  Google Scholar 

  3. J. D. Bao and Y. Z. Zhuo, Biasing fluctuation model for directional stepping motion of molecular motor, Chin. Sci. Bull. 43(22), 1879 (1998)

    Article  Google Scholar 

  4. P. Reimann, Brownian motors: Noisy transport far from equilibrium, Phys. Rep. 361(2–4), 57 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. O. M. Braun, R. Ferrando, and G. E. Tommei, Stimulated diffusion of an adsorbed dimer, Phys. Rev. E 68(5), 051101 (2003)

    Article  ADS  Google Scholar 

  6. S. Gonçalves, C. Fusco, A. R. Bishop, and V. M. Kenkre, Bistability and hysteresis in the sliding friction of a dimer, Phys. Rev. B 72(19), 195418 (2005)

    Article  ADS  Google Scholar 

  7. E. Heinsalu, M. Patriarca, and F. Marchesoni, Dimer diffusion in a washboard potential, Phys. Rev. E 77(2), 021129 (2008)

    Article  ADS  Google Scholar 

  8. A. E. Filippov, J. Klafter, and M. Urbakh, Friction through dynamical formation and rupture of molecular bonds, Phys. Rev. Lett. 92(13), 135503 (2004)

    Article  ADS  Google Scholar 

  9. S. Maier, Y. Sang, T. Filleter, M. Grant, R. Bennewitz, E. Gnecco, and E. Meyer, Fluctuations and jump dynamics in atomic friction experiments, Phys. Rev. B 72(24), 245418 (2005)

    Article  ADS  Google Scholar 

  10. H. Y. Wang and J. D. Bao, Transport coherence in coupled Brownian ratchet, Physica A 374(1), 33 (2007)

    Article  ADS  Google Scholar 

  11. J. L. Mateos, A random walker on a ratchet, Physica A 351(1), 79 (2005)

    Article  ADS  Google Scholar 

  12. S. E. Mangioni and H. S. Wio, A random walker on a ratchet potential: Effect of a non Gaussian noise, Eur. Phys. J. B 61(1), 67 (2008)

    Article  ADS  Google Scholar 

  13. E. M. Craig, M. J. Zuckermann, and H. Linke, Mechanical coupling in flashing ratchets, Phys. Rev. E 73(5), 051106 (2006)

    Article  ADS  Google Scholar 

  14. J. Menche and L. Schimansky-Geier, Two particles with bistable coupling on a ratchet, Phys. Lett. A 359(2), 90 (2006)

    Article  ADS  Google Scholar 

  15. M. Evstigneev, S. von Gehlen, and P. Reimann, Interaction-controlled Brownian motion in a tilted periodic potential, Phys. Rev. E 79(1), 011116 (2009)

    Article  ADS  Google Scholar 

  16. C. Lutz, M. Reichert, H. Stark, and C. Bechinger, Surmounting barriers: The benefit of hydrodynamic interactions, Europhys. Lett. 74(4), 719 (2006)

    Article  ADS  Google Scholar 

  17. T. F. Gao, B. Q. Ai, Z. G. Zheng, and J. C. Chen, The enhancement of current and efficiency in feedback coupled Brownian ratchets, J. Stat. Mech. 2016(9), 093204 (2016)

    Article  MathSciNet  Google Scholar 

  18. H. Y. Wang and J. D. Bao, Kramers-type elastic ratchet model for ATP gating during kinesin’s mechanochemical cycle, Physica A 389(3), 433 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  19. Z. G. Zheng and Z. Hong-Qing, New soliton-like solutions for (2+1)-dimensional breaking soliton equation, Commum. Theor. Phys. 43(3), 401 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. B. O. Yan, R. M. Miura, and Y. D. Chen, Direction reversal of fluctuation-induced biased Brownian motion on distorted ratchets, J. Theor. Biol. 210(2), 141 (2001)

    Article  Google Scholar 

  21. A. Pototsky, N. B. Janson, F. Marchesoni, and S. Savelev, Dipole rectification in an oscillating electric field, Europhys. Lett. 88(3), 30003 (2009)

    Article  ADS  Google Scholar 

  22. Z. G. Zheng, G. Hu, and B. Hu, Collective directional transport in coupled nonlinear oscillators without external bias, Phys. Rev. Lett. 86(11), 2273 (2001)

    Article  ADS  Google Scholar 

  23. S. von Gehlen, M. Evstigneev, and P. Reimann, Ratchet effect of a dimer with broken friction symmetry in a symmetric potential, Phys. Rev. E 79(3), 031114 (2009)

    Article  ADS  Google Scholar 

  24. H. Y. Wang and J. D. Bao, The roles of ratchet in transport of two coupled particles, Physica A 337(1–2), 13 (2004)

    Article  ADS  Google Scholar 

  25. Z. G. Zheng, M. C. Cross, and G. Hu, Collective directed transport of symmetrically coupled lattices in symmetric periodic potentials, Phys. Rev. Lett. 89, 154102 (2002)

    Article  ADS  Google Scholar 

  26. Z. G. Zheng and H. B. Chen, Cooperative twodimensional directed transport, Europhys. Lett. 92(3), 30004 (2010)

    Article  ADS  Google Scholar 

  27. S. von Gehlen, M. Evstigneev, and P. Reimann, Dynamics of a dimer in a symmetric potential: Ratchet effect generated by an internal degree of freedom, Phys. Rev. E 77(3), 031136 (2008)

    Article  ADS  Google Scholar 

  28. A. D. Rogat and K. G. Miler, A role for myosin VI in actin dynamics at sites of membrane remodeling during Drosophila spermatogenesis, J. Cell Sci. 115(24), 4855 (2002)

    Article  Google Scholar 

  29. H. Park, A. Li, L. Q. Chen, A. Houdusse, P. R. Selvin, and H. L. Sweeney, The unique insert at the end of the myosin VI motor is the sole determinant of directionality, Proc. Natl. Acad. Sci. USA 104(3), 778 (2007)

    Article  ADS  Google Scholar 

  30. E. M. De La Cruz, E. M. Ostap, and H. L. Sweeney, Kinetic mechanism and regulation of myosin VI, J. Biochem. 276(34), 32373 (2001)

    Google Scholar 

  31. S. Nishikawa, K. Homma, Y. Komori, M. Iwaki, T. Wazawa, A. Hikikoshi Iwone, J. Saito, R. Ikebe, E. Katayama, T. Yanagida, and M. Ikebe, Class VI myosin moves processively along actin filaments backward with large steps, Biochem. Biophys. Res. Commun. 290(1), 311 (2002)

    Article  Google Scholar 

  32. A. Wunderlin and H. Haken, Generalized Ginzburg-Landau equations, slaving principle and center manifold theorem, Z. Phys. B Condens. Matter 44(1–2), 135 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  33. J. C. Chen and G. Z. Su, Thermodynamics and Statistical Physics (Vol. 1), Beijing: Science Press, 2010 (in Chinese)

    Google Scholar 

  34. J. D. Bao, Stochastic Simulation Method of Classical and Quantum Dissipative Systems, Beijing: Science Press, 2009 (in Chinese)

    Google Scholar 

  35. Z. G. Zheng, Collective Behaviors and Spatiotemporal Dynamics in Coupled Nonlinear System, Beijing: Higher Education Press, 2004 (in Chinese)

    Google Scholar 

  36. H. B. Chen, Q. W. Wang, and Z. G. Zheng, Deterministic directed transport of inertial particles in a flashing ratchet potential, Phys. Rev. E 71(3), 031102 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 11075016 and 11475022), the Scientific Research project of Zhangjiakou city (Grant No. 1611064B), and the Scientific Research Funds of Huaqiao University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Gang Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, CP., Chen, HB. & Zheng, ZG. Double-temperature ratchet model and current reversal of coupled Brownian motors. Front. Phys. 12, 120507 (2017). https://doi.org/10.1007/s11467-017-0659-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-017-0659-9

Keywords

Navigation